Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2016 Aug;48(8):1570-9.
doi: 10.1249/MSS.0000000000000937.

Mechanical Alterations to Repeated Treadmill Sprints in Normobaric Hypoxia

Affiliations
Randomized Controlled Trial

Mechanical Alterations to Repeated Treadmill Sprints in Normobaric Hypoxia

Franck Brocherie et al. Med Sci Sports Exerc. 2016 Aug.

Abstract

Purpose: Compelling evidence suggests larger performance decrements during hypoxic versus normoxic repeated sprinting. Yet the underlying mechanical alterations have not been thoroughly investigated. Therefore, we examined the effects of different levels of normobaric hypoxia on running mechanical performance during repeated treadmill sprinting.

Methods: Thirteen team sport athletes performed eight 5-s sprints with 25 s of passive recovery on an instrumented treadmill in either normoxia near sea level (SL; FiO2 = 20.9%), moderate normobaric hypoxia (MH; FiO2 = 16.8%; corresponding to ~1800 m altitude), or severe normobaric hypoxia (SH; FiO2 = 13.3%; ~3600 m).

Results: Net power output in the horizontal direction did not differ (P > 0.05) between conditions for the first sprint (mean ± SD, pooled values: 13.09 ± 1.97 W·kg) but was lower for the eight sprints in SH compared with SL (-7.3% ± 5.5%, P < 0.001) and MH (-7.1% ± 5.9%, P < 0.01), with no difference between SL and MH (+0.1% ± 8.0%, P = 1.00). Sprint decrement score was similar between conditions (pooled values: -11.4% ± 7.9%, P = 0.49). Mean vertical, horizontal, and resultant ground reaction forces decreased (P < 0.001) from the first to the last repetition in all conditions (pooled values: -2.4% ± 1.9%, -8.6% ± 6.5%, and -2.4% ± 1.9%). This was further accompanied by larger kinematic (mainly contact time: +4.0% ± 2.9%, P < 0.001, and +3.3% ± 3.6%, P < 0.05, respectively; stride frequency: -2.3% ± 2.0%, P < 0.01, and -2.3% ± 2.8%, P < 0.05, respectively) and spring-mass characteristics (mainly vertical stiffness: -6.0% ± 3.9% and -5.1% ± 5.7%, respectively, P < 0.01) fatigue-induced changes in SH compared with SL and MH.

Conclusion: In SH, impairments in repeated sprint ability and in associated kinetics/kinematics and spring-mass characteristics exceed those observed near SL and in MH (i.e., no or minimal difference). Specifically, SH accentuates the repeated sprint ability fatigue-related inability to effectively apply forward-oriented ground reaction force and to maintain vertical stiffness and stride frequency.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources