Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Apr 15;264(11):6164-70.

Succinimide formation from aspartyl and asparaginyl peptides as a model for the spontaneous degradation of proteins

Affiliations
  • PMID: 2703484
Free article

Succinimide formation from aspartyl and asparaginyl peptides as a model for the spontaneous degradation of proteins

R C Stephenson et al. J Biol Chem. .
Free article

Abstract

Nonenzymatic intramolecular reactions can result in the deamidation, isomerization, and racemization of protein and peptide asparaginyl and aspartyl residues via succinimide intermediates. To understand the sequence dependence of these reactions, we measured the rate of succinimide formation in a series of synthetic peptides at pH 7.4. These peptides (Val-Tyr-Pro-X-Y-Ala) contained an internal aspartyl, asparaginyl, aspartyl beta-methyl ester, or aspartyl alpha-methyl ester residue (X) followed by a glycyl, seryl, or alanyl residue (Y). The rates of succinimide formation of the asparaginyl peptides were found to be 13.1-35.6 times faster than those of the aspartyl peptides. The rates of succinimide formation for the glycyl peptides were 6.5-17.6 times faster than those of the alanyl peptides, while the rates for the seryl peptides were 1.6-4.5 times faster than those of the alanyl peptides. The overall 232-fold range in these reaction rates for aspartyl and asparaginyl residues suggests that sequence can be an important determinant in their stability in flexible peptides. In proteins, there may be a much larger range in the rates of succinimide formation because specific conformations may greatly enhance or inhibit this reaction.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources