Tendon-derived progenitor cells improve healing of collagenase-induced flexor tendinitis

J Orthop Res. 2016 Dec;34(12):2162-2171. doi: 10.1002/jor.23251. Epub 2016 Apr 7.

Abstract

Tendinitis is a common and a performance-limiting injury in athletes. This study describes the value of intralesional tendon-derived progenitor cell (TDPC) injections in equine flexor tendinitis. Collagenase-induced tendinitis was created in both front superficial digital flexor (SDF) tendons. Four weeks later, the forelimb tendon lesions were treated with 1 × 107 autogenous TDPCs or saline. Tendinitis was also induced by collagenase in one hind SDF tendon, to study the survival and distribution of DiI-labeled TDPCs 1, 2, 4, and 6 weeks after injection. The remaining normal tendon was used as a "control." Twelve weeks after forelimb TDPC injections, tendons were harvested for assessment of matrix gene expression, biochemical, biomechanical, and histological characteristics. DiI-labeled TDPCs were abundant 1 week after injection but gradually declined over time and were undetectable after 6 weeks. Twelve weeks after TDPC injection, collagens I and III, COMP and tenomodulin mRNA levels were similar (p = 0.3) in both TDPC and saline groups and higher (p < 0.05) than normal tendon. Yield and maximal stresses of the TDPC group were significantly greater (p = 0.005) than the saline group's and similar (p = 0.6) to normal tendon. However, the elastic modulus of the TDPC and saline groups were not significantly different (p = 0.32). Histological assessment of the repair tissues with Fourier transform-second harmonic generation imaging demonstrated that collagen alignment was significantly better (p = 0.02) in TDPC group than in the saline controls. In summary, treating collagenase-induced flexor tendon lesions with TDPCs improved the tensile strength and collagen fiber alignment of the repair tissue. Study Design © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2162-2171, 2016.

Keywords: flexor tendon; in vivo; tendinitis; tendon-derived progenitor cells (TDPCs).

Publication types

  • Evaluation Study

MeSH terms

  • Animals
  • Cell Survival
  • Collagenases
  • Disease Models, Animal
  • Gene Expression
  • Horses
  • Random Allocation
  • Stem Cell Transplantation*
  • Tendinopathy / chemically induced
  • Tendinopathy / therapy*
  • Tendons / metabolism

Substances

  • Collagenases