DETECTION OF DIATOM XANTHOPHYLL CYCLE USING SPECTRAL REFLECTANCE(1)

J Phycol. 2008 Oct;44(5):1349-59. doi: 10.1111/j.1529-8817.2008.00583.x. Epub 2008 Sep 17.

Abstract

Analysis of reflectance spectra was used to monitor the conversion of diadinoxanthin (DD) into diatoxanthin (DT) in two benthic diatom species, Amphora coffeaeformis (C. Agardh) Kütz. and Cylindrotheca closterium (Ehrenb.) J. C. Lewin et Reiman, cultured at high light (HL, 400 μmol · m(-2) · s(-1) PAR) and low light (LL, 25 μmol · m(-2) · s(-1) PAR). Cultures were exposed to saturating light for 32 min. HL cultures of both species showed higher (DT + DD) content, whereas LL cultures exhibited higher chl a and fucoxanthin content. DD to DT conversion, measured by HPLC, occurred mainly in the first 2 min (LL) or 5 min (HL) after exposure to saturating light. Nonphotochemical quenching (NPQ), measured by PAM fluorescence, showed the same pattern as DT/(DD + DT), resulting in a linear relationship between these parameters. Addition of dithiothreitol (DTT) blocked the conversion of DD into DT and significantly reduced NPQ induction. Reflectance spectra showed no obvious change after light exposure. However, second derivative spectra (δδ) showed a shift in reflectance from 487 to 508 nm, which was not present for DTT-treated samples. Changes in δδ487 were strongly correlated with changes in DD (r = 0.76), while changes in δδ508 were strongly correlated with changes in DT (r = 0.94). The best index to estimate DD to DT conversion was δδ508 /δδ630 (r = 0.87). This index was very sensitive to minute changes that occurred immediately after exposure to light and was species insensitive. Good relationships were observed between indices for xanthophyll cycle activation (DD to DT conversion and NPQ induction) and the second derivative spectra. With further in situ validation, this index may prove to be highly useful for investigation into aquatic global photoregulation mechanisms in diatom-dominated samples.

Keywords: PAM fluorescence; derivative analysis; diatoms; spectral reflectance; xanthophyll cycle.