Oral mucosa keratinocytes are widely used in regenerative medicine. The unique cultured cell population "Epithelial-derived Pop-Up Keratinocytes (ePUKs)" was previously reported as undifferentiated cells. Gravity Assisted Cell Sorting (GACS) was used to isolate a small-sized population of undifferentiated cells enriched ePUKs. LC/MS/MS analysis was performed to define the cellular profile of ePUKs of primary human oral mucosa keratinocytes. Small sized ePUKs which showed increased expression of Dickkopf WNT signaling pathway inhibitor 1 (DKK1), serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1), member 1 (SERPINE1), follistatin and tenascin-C were verified by Western blots. These proteins are involved in the regulation of cellular movement, hair follicle development and the maintenance of its stem cell niche. The fabrication of a tissue-engineered oral mucosa, ex vivo produced oral mucosa equivalent (EVPOME), using ePUKs showed increased abundance of these verified proteins. These findings indicate that the specific phenotype of ePUKs and their ability to influence wound healing promotion are implicated by highly expressed cellular movement regulatory proteins. Therefore, ePUKs may be a useful cell source for use in regenerative medicine.
Keywords: Oral mucosa; Quantitative proteomics; Tissue engineering.