Alzheimer's disease (AD) is a neurodegenerative disorder and its reported pathophysiological features in the brain include the deposition of amyloid beta peptide, chronic inflammation, and cognitive impairment. The incidence of AD is increasing worldwide and researchers have studied various aspects of AD pathophysiology in order to improve our understanding of the disease. Thus far, the onset mechanisms and means of preventing AD are completely unknown. Peroxisome proliferator-activated receptor-γ coactivator (PGC-1α) is a protein related to various cellular mechanisms that lead to the alteration of downstream gene regulation. It has been reported that PGC-1α could protect cells against oxidative stress and reduce mitochondrial dysfunction. Moreover, it has been demonstrated to have a regulatory role in inflammatory signaling and insulin sensitivity related to cognitive function. Here, we present further evidence of the involvement of PGC-1α in AD pathogenesis. Clarifying the relationship between PGC-1α and AD pathology might highlight PGC-1α as a possible target for therapeutic intervention in AD.
Keywords: Alzheimer's disease; Cognitive dysfunction; Insulin resistance; Oxidative stress; Peroxisome proliferator-activated receptor-γ coactivator (PGC-1α).