The effects of vitamin D deprivation on the chick heart were investigated from three aspects: cardiac contractility (+/- dP/dT), intracellular high-energy phosphorus compounds, and structural differences. Four-week-old vitamin D-deficient chicks were divided into four groups: Group A served as the normal group and received subcutaneous injections of cholecalciferol; Groups B and C were vitamin D-deficient hearts but perfused differently; Group D received daily subcutaneous injections of 5 micrograms of 1,25(OH)2D3. When the isolated spontaneously beating hearts (modified Langendorff preparation) were perfused with Krebs-Henseleit (KH) solution containing a calcium concentration of 2.5mM, the myocardial contractility of the vitamin D-deficient hearts was significantly increased when compared with group A. After the isolated heart had beaten for one hour, the myocardial contractility in the vitamin D-deficient hearts was found to decline to significantly lower values. Presacrifice administration of 1,25(OH)2D3 improved cardiac performance. Vitamin D deficiency resulted in an enhanced rate of decline of the intracellular high-energy phosphorus compounds. No differences were found in the microscopic study. These observations suggest that vitamin D has a role in cardiac function.