Statistical Mechanics of Allosteric Enzymes

J Phys Chem B. 2016 Jul 7;120(26):6021-37. doi: 10.1021/acs.jpcb.6b01911. Epub 2016 Apr 29.

Abstract

The concept of allostery in which macromolecules switch between two different conformations is a central theme in biological processes ranging from gene regulation to cell signaling to enzymology. Allosteric enzymes pervade metabolic processes, yet a simple and unified treatment of the effects of allostery in enzymes has been lacking. In this work, we take a step toward this goal by modeling allosteric enzymes and their interaction with two key molecular players-allosteric regulators and competitive inhibitors. We then apply this model to characterize existing data on enzyme activity, comment on how enzyme parameters (such as substrate binding affinity) can be experimentally tuned, and make novel predictions on how to control phenomena such as substrate inhibition.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Allosteric Regulation
  • Allosteric Site
  • Binding Sites
  • Binding, Competitive
  • Biocatalysis
  • Catalytic Domain
  • Enzyme Inhibitors / chemistry*
  • Enzymes / chemistry*
  • Humans
  • Hydrolysis
  • Kinetics
  • Models, Chemical*
  • Protein Binding
  • Thermodynamics

Substances

  • Enzyme Inhibitors
  • Enzymes