Astrocytic glutamate transport regulates a Drosophila CNS synapse that lacks astrocyte ensheathment

J Comp Neurol. 2016 Jul 1;524(10):1979-98. doi: 10.1002/cne.24016. Epub 2016 Apr 25.

Abstract

Anatomical, molecular, and physiological interactions between astrocytes and neuronal synapses regulate information processing in the brain. The fruit fly Drosophila melanogaster has become a valuable experimental system for genetic manipulation of the nervous system and has enormous potential for elucidating mechanisms that mediate neuron-glia interactions. Here, we show the first electrophysiological recordings from Drosophila astrocytes and characterize their spatial and physiological relationship with particular synapses. Astrocyte intrinsic properties were found to be strongly analogous to those of vertebrate astrocytes, including a passive current-voltage relationship, low membrane resistance, high capacitance, and dye-coupling to local astrocytes. Responses to optogenetic stimulation of glutamatergic premotor neurons were correlated directly with anatomy using serial electron microscopy reconstructions of homologous identified neurons and surrounding astrocytic processes. Robust bidirectional communication was present: neuronal activation triggered astrocytic glutamate transport via excitatory amino acid transporter 1 (Eaat1), and blocking Eaat1 extended glutamatergic interneuron-evoked inhibitory postsynaptic currents in motor neurons. The neuronal synapses were always located within 1 μm of an astrocytic process, but none were ensheathed by those processes. Thus, fly astrocytes can modulate fast synaptic transmission via neurotransmitter transport within these anatomical parameters. J. Comp. Neurol. 524:1979-1998, 2016. © 2016 Wiley Periodicals, Inc.

Keywords: RRID: AB_221477; RRID: AB_2313643; RRID: AB_2490070; RRID: AB_528122; RRID: AB_528235; RRID: SCR_007353; coupling; electron microscopy; electrophysiology; optogenetics.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Animals, Genetically Modified
  • Aspartic Acid / pharmacology
  • Astrocytes / physiology*
  • Astrocytes / ultrastructure
  • Cadmium Chloride / pharmacology
  • Cell Adhesion Molecules, Neuronal / metabolism
  • Central Nervous System / cytology*
  • Central Nervous System / physiology
  • Central Nervous System / ultrastructure
  • Choline O-Acetyltransferase / metabolism
  • Drosophila
  • Drosophila Proteins / antagonists & inhibitors
  • Drosophila Proteins / genetics
  • Drosophila Proteins / metabolism*
  • Excitatory Amino Acid Transporter 1 / metabolism
  • Gene Expression Regulation / drug effects
  • Gene Expression Regulation / genetics
  • Inhibitory Postsynaptic Potentials / drug effects
  • Inhibitory Postsynaptic Potentials / genetics
  • Larva
  • Locomotion / genetics
  • Nerve Net / physiology
  • Nerve Net / ultrastructure
  • Neurons / physiology*
  • Neurons / ultrastructure
  • Sodium Channel Blockers / pharmacology
  • Synapses / genetics
  • Synapses / physiology*
  • Synapses / ultrastructure
  • Tetrodotoxin / pharmacology
  • Transcription Factors / antagonists & inhibitors
  • Transcription Factors / genetics
  • Transcription Factors / metabolism*
  • Vesicular Inhibitory Amino Acid Transport Proteins / metabolism

Substances

  • Cell Adhesion Molecules, Neuronal
  • Drosophila Proteins
  • Excitatory Amino Acid Transporter 1
  • GAL4 protein, Drosophila
  • Sodium Channel Blockers
  • Transcription Factors
  • Vesicular Inhibitory Amino Acid Transport Proteins
  • benzyloxyaspartate
  • fasciclin II
  • vesicular GABA transporter
  • Aspartic Acid
  • Tetrodotoxin
  • Choline O-Acetyltransferase
  • Cadmium Chloride