Microtubule nucleation and organization in dendrites
- PMID: 27097122
- PMCID: PMC4957598
- DOI: 10.1080/15384101.2016.1172158
Microtubule nucleation and organization in dendrites
Abstract
Dendrite branching is an essential process for building complex nervous systems. It determines the number, distribution and integration of inputs into a neuron, and is regulated to create the diverse dendrite arbor branching patterns characteristic of different neuron types. The microtubule cytoskeleton is critical to provide structure and exert force during dendrite branching. It also supports the functional requirements of dendrites, reflected by differential microtubule architectural organization between neuron types, illustrated here for sensory neurons. Both anterograde and retrograde microtubule polymerization occur within growing dendrites, and recent studies indicate that branching is enhanced by anterograde microtubule polymerization events in nascent branches. The polarities of microtubule polymerization events are regulated by the position and orientation of microtubule nucleation events in the dendrite arbor. Golgi outposts are a primary microtubule nucleation center in dendrites and share common nucleation machinery with the centrosome. In addition, pre-existing dendrite microtubules may act as nucleation sites. We discuss how balancing the activities of distinct nucleation machineries within the growing dendrite can alter microtubule polymerization polarity and dendrite branching, and how regulating this balance can generate neuron type-specific morphologies.
Keywords: Augmin; Golgi outpost; dendrite; microtubule nucleation; microtubule polarity; neuron morphology; pericentriolar material.
Figures
Similar articles
-
Centrosomin represses dendrite branching by orienting microtubule nucleation.Nat Neurosci. 2015 Oct;18(10):1437-45. doi: 10.1038/nn.4099. Epub 2015 Aug 31. Nat Neurosci. 2015. PMID: 26322925
-
Golgi Outposts Locally Regulate Microtubule Orientation in Neurons but Are Not Required for the Overall Polarity of the Dendritic Cytoskeleton.Genetics. 2020 Jun;215(2):435-447. doi: 10.1534/genetics.119.302979. Epub 2020 Apr 7. Genetics. 2020. PMID: 32265236 Free PMC article.
-
Golgi outposts shape dendrite morphology by functioning as sites of acentrosomal microtubule nucleation in neurons.Neuron. 2012 Dec 6;76(5):921-30. doi: 10.1016/j.neuron.2012.10.008. Neuron. 2012. PMID: 23217741 Free PMC article.
-
Golgi Outposts Nucleate Microtubules in Cells with Specialized Shapes.Trends Cell Biol. 2020 Oct;30(10):792-804. doi: 10.1016/j.tcb.2020.07.004. Epub 2020 Aug 27. Trends Cell Biol. 2020. PMID: 32863092 Review.
-
Nucleating microtubules in neurons: Challenges and solutions.Dev Neurobiol. 2021 Apr;81(3):273-283. doi: 10.1002/dneu.22751. Epub 2020 May 15. Dev Neurobiol. 2021. PMID: 32324945 Review.
Cited by
-
Mechanisms that regulate morphogenesis of a highly branched neuron in C. elegans.Dev Biol. 2019 Jul 1;451(1):53-67. doi: 10.1016/j.ydbio.2019.04.002. Epub 2019 Apr 17. Dev Biol. 2019. PMID: 31004567 Free PMC article. Review.
-
Double Duty: Mitotic Kinesins and Their Post-Mitotic Functions in Neurons.Cells. 2021 Jan 12;10(1):136. doi: 10.3390/cells10010136. Cells. 2021. PMID: 33445569 Free PMC article. Review.
-
Actin assembly and non-muscle myosin activity drive dendrite retraction in an UNC-6/Netrin dependent self-avoidance response.PLoS Genet. 2019 Jun 20;15(6):e1008228. doi: 10.1371/journal.pgen.1008228. eCollection 2019 Jun. PLoS Genet. 2019. PMID: 31220078 Free PMC article.
-
Polarity Sorting of Microtubules in the Axon.Trends Neurosci. 2018 Feb;41(2):77-88. doi: 10.1016/j.tins.2017.11.002. Epub 2017 Nov 30. Trends Neurosci. 2018. PMID: 29198454 Free PMC article. Review.
-
Spatiotemporal changes in microtubule dynamics during dendritic morphogenesis.Fly (Austin). 2022 Dec;16(1):13-23. doi: 10.1080/19336934.2021.1976033. Fly (Austin). 2022. PMID: 34609266 Free PMC article.
References
-
- London M, Hausser M. Dendritic computation. Annu Rev Neurosci 2005; 28:503-32; PMID:16033324; http://dx.doi.org/10.1146/annurev.neuro.28.061604.135703 - DOI - PubMed
-
- Spruston N. Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 2008; 9:206-21; PMID:18270515; http://dx.doi.org/10.1038/nrn2286 - DOI - PubMed
-
- Kulkarni VA, Firestein BL. The dendritic tree and brain disorders. Mol Cell Neurosci 2012; 50:10-20; PMID:22465229; http://dx.doi.org/10.1016/j.mcn.2012.03.005 - DOI - PubMed
-
- Lefebvre JL, Sanes JR, Kay JN. Development of Dendritic Form and Function. Annu Rev Cell Dev Biol 2015; 31:741-77; PMID:26422333; http://dx.doi.org/10.1146/annurev-cellbio-100913-013020 - DOI - PubMed
-
- Cajal SR. Estructura de los centros neviosos de las aves. Rev Trim Histol Normal Patologica 1888; 1:1-10
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases