Evidence for Charge Transfer at the Interface between Hybrid Phosphomolybdate and Epitaxial Graphene

Langmuir. 2016 May 17;32(19):4774-83. doi: 10.1021/acs.langmuir.6b00870. Epub 2016 May 4.

Abstract

The interfacing of polyoxometalates and graphene can be considered to be an innovative way to generate hybrid structures that take advantage of the properties of both components. Polyoxometalates are redox-sensitive and photosensitive compounds with high temperature stability (up to 400 °C for some), showing tunable properties depending on the metal incorporated inside the complex. Graphene has a unique electronic band structure combined with good material properties for electrical and optical applications. The spontaneous, rather than electrochemical, functionalization of epitaxial graphene on SiC with Keggin phosphomolybdate derivative TBA3[PMo11O39{Sn(C6H4)C≡C(C6H4)N2}] (named K(Mo)Sn[N2(+)]) bearing a phenyl diazonium unit is investigated. Graphene decoration is evidenced by means of AFM, Raman, XPS, and cyclic voltammetry, indicating a successful immobilization of the polyoxomolybdate. The covalent bonding of the polyoxometalate to the graphene substrate can be deduced from the appearance of a D band in the Raman spectra and from the loss of mobility in the electrical conduction. High-resolution XPS spectra reveal an electron transfer from the graphene to the Mo complex. The comparison of charge-carrier density measurements before and after grafting supports the p-type doping effect, which is further evidenced by work function UPS measurements.

Publication types

  • Research Support, Non-U.S. Gov't