Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Apr 26:23:8.
doi: 10.1186/s40709-016-0047-6. eCollection 2016 Dec.

Co-culturing bacteria and microalgae in organic carbon containing medium

Affiliations

Co-culturing bacteria and microalgae in organic carbon containing medium

Jichang Han et al. J Biol Res (Thessalon). .

Abstract

Background: Microalgae frequently grow in natural environment and long-term laboratory cultures in association with bacteria. Bacteria benefit the oxygen and extracellular substances generated by microalgae, and reimburse microalgae with carbon dioxide, vitamins and so on. Such synergistic relationship has aided in establishing an efficient microalga-bacterium co-culturing mode. Obviously, the mutually beneficial relationship can be strengthened with the increase of the densities of microalgae and bacteria. However, nearly all of the early co-cultures were performed under photoautotrophic conditions, thus both microalgae and bacteria were at relatively low densities. In this study, the feasibility of bacteria-microalgae co-cultured under mixotrophic conditions was studied.

Results: Firstly, bacteria mingled with xenic microalgae were isolated and identified based on their 16S rRNA gene sequence (16S rDNA hereafter). Then, the two most frequently found strains of Muricauda sp. were co-cultured with axenic microalga (Tetraselmis chuii, Cylindrotheca fusiformis and Nannochloropsis gaditana) in extra organic carbon containing medium. At the end of a co-culture period of 33 days, we found that the final cell density of T. chuii and C. fusiformis of various treatments was remarkably higher than that of controls (21.37-31.18 and 65.42-83.47 %, respectively); on the contrary, the growth of N. gaditana was markedly inhibited. During the co-culture of bacteria with C. fusiformis, the cell density of two strains of bacteria firstly decreased, then increased and maintained at a relatively steady level. However, the cell density of bacteria performed a sustaining downward trend when they were co-cultured with T. chuii and N. gaditana.

Conclusions: Our findings proved that microalgae-bacteria co-cultures under mixotrophic conditions are quite effective strategy for microalgal cultivation.

Keywords: Bacteria; Microalgae; Microalgae-bacteria co-culture; Mixotrophy.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Growth curves of Mur1 and Mur2. Error bars are too small to be seen
Fig. 2
Fig. 2
Growth performances of Mur1 and Mur2 during co-culture. Mur1 and Mur2 co-cultured with T. chuii ( a, b); C. fusiformis (c, d); N. gaditana (e, f), respectively
Fig. 3
Fig. 3
Performance of three microalga during co-culture. T. chuii (a, b), C. fusiformis (c, d) and N. gaditana (e, f) co-cultured with Mur1 and Mur2

Similar articles

Cited by

References

    1. Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, et al. Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol. 2010;28:371–380. doi: 10.1016/j.tibtech.2010.04.004. - DOI - PubMed
    1. Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ. A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol. 2008;19:430–436. doi: 10.1016/j.copbio.2008.07.008. - DOI - PubMed
    1. Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R. Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnol Adv. 2011;29:896–907. doi: 10.1016/j.biotechadv.2011.07.009. - DOI - PubMed
    1. Adarme-Vega TC, Lim DK, Timmins M, Vernen F, Li Y, Schenk PM. Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microbial Cell Fact. 2012;11:96. doi: 10.1186/1475-2859-11-96. - DOI - PMC - PubMed
    1. Bougaran G, Bernard O, Sciandra A. Modeling continuous cultures of microalgae colimited by nitrogen and phosphorus. J Theor Biol. 2010;265:443–454. doi: 10.1016/j.jtbi.2010.04.018. - DOI - PubMed