A Prussian Blue/Zinc Secondary Battery with a Bio-Ionic Liquid-Water Mixture as Electrolyte

ACS Appl Mater Interfaces. 2016 May 18;8(19):12158-64. doi: 10.1021/acsami.6b01592. Epub 2016 May 4.

Abstract

The development of rechargeable zinc ion batteries with high capacity and high cycling stability is a great challenge in aqueous solution due to hydrogen evolution and dendritic growth of zinc. In this study, we present a zinc ion secondary battery, comprising a metallic zinc anode, a bio-ionic liquid-water electrolyte, and a nanostructured prussian blue analogue (PBA) cathode. Both the Zn anode and the PBA cathode exhibit good compatibility with the bio-ionic liquid-water electrolyte, which enables the electrochemical deposition/dissolution of zinc at the zinc anode, and reversible insertion/extraction of Zn(2+) ions at the PBA cathode. The cell exhibits a well-defined discharge voltage plateau of ∼1.1 V with a specific capacity of about 120 mAh g(-1) at a current of 10 mA g(-1) (∼0.1 C). The Zn anode shows great reversibility, and dendrite-free Zn deposits were obtained after 100 deposition/dissolution cycles. The integration of an environmentally friendly PBA cathode, a nontoxic and low-cost Zn anode, and a biodegradable ionic liquid-water electrolyte provides new perspective to develop rechargeable zinc ion batteries for various applications in electric energy storage.

Keywords: Prussian blue; battery; biodegradable; ionic liquids; zinc.

Publication types

  • Research Support, Non-U.S. Gov't