The domestic dog, Canis familiaris, is a valuable model for studying human diseases. The publication of the latest Canine genome build and annotation, CanFam3.1 provides an opportunity to enhance our understanding of gene regulation across tissues in the dog model system. In this study, we used the latest dog genome assembly and small RNA sequencing data from 9 different dog tissues to predict novel miRNAs in the dog genome, as well as to annotate conserved miRNAs from the miRBase database that were missing from the current dog annotation. We used both miRCat and miRDeep2 algorithms to computationally predict miRNA loci. The resulting, putative hairpin sequences were analysed in order to discard false positives, based on predicted secondary structures and patterns of small RNA read alignments. Results were further divided into high and low confidence miRNAs, using the same criteria. We generated tissue specific expression profiles for the resulting set of 811 loci: 720 conserved miRNAs, (207 of which had not been previously annotated in the dog genome) and 91 novel miRNA loci. Comparative analyses revealed 8 putative homologues of some novel miRNA in ferret, and one in microbat. All miRNAs were also classified into the genic and intergenic categories, based on the Ensembl RefSeq gene annotation for CanFam3.1. This additionally allowed us to identify four previously undescribed MiRtrons among our total set of miRNAs. We additionally annotated piRNAs, using proTRAC on the same input data. We thus identified 263 putative clusters, most of which (211 clusters) were found to be expressed in testis. Our results represent an important improvement of the dog genome annotation, paving the way to further research on the evolution of gene regulation, as well as on the contribution of post-transcriptional regulation to pathological conditions.