Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. Apr-Jun 2016;32(2):132-6.
doi: 10.4103/0970-1591.174778.

Ultra-mini-percutaneous Nephrolithotomy: A Minimally-Invasive Option for Percutaneous Stone Removal

Free PMC article

Ultra-mini-percutaneous Nephrolithotomy: A Minimally-Invasive Option for Percutaneous Stone Removal

Madhu Sudan Agrawal et al. Indian J Urol. .
Free PMC article


Introduction: Percutaneous nephrolithotomy (PCNL) has witnessed rapid advancements, the latest being ultra-mini-percutaneous nephrolithotomy (UMP), which makes the use of 11-13F sheaths as compared to 24-30F sizes used in conventional PCNL. This miniaturization aims to reduce morbidity and improve patient outcomes. We evaluated the safety and efficacy of UMP and report our ourtcomes.

Patients and methods: A total of 120 patients underwent UMP from July 2012 to March 2014. These patients had a single unilateral renal stone measuring between 8 and 20 mm. All patients underwent UMP using a 3F nephroscope, 7.5F inner sheath, and 11F or 13F outer metallic cannula, which served as the Amplatz sheath. Stone fragmentation and clearance were achieved with holmium laser. No nephrostomy or stent was used routinely.

Results: Complete stone fragmentation was achieved in 114 out of 120 patients (95%) using UMP; whereas the remaining 6 were converted into mini-PCNL using a 12.5F nephroscope and 15F Amplatz sheath. The mean operative time was 39.7 ± 15.4 min, and the mean postoperative hospital stay was 22.3 ± 2.2 h. Postoperatively, 6 (5%) patients had residual fragments measuring ≤4 mm. At the 2 weeks follow-up, the stone-free status was >99% (119/120). There were no significant postoperative complications.

Conclusion: This study shows UMP to be an effective and safe procedure for managing stones up to 20 mm. This procedure offers an attractive alternative to shock wave lithotripsy and retrograde intrarenal surgery for managing small stones.

Keywords: Nephrolithiasis; percutaneous nephrolithotomy; ultra-mini-percutaneous nephrolithotomy.


Figure 1
Figure 1
Ultra-mini-percutaneous nephrolithotomy equipment
Figure 2
Figure 2
Ultra-mini-percutaneous nephrolithotomy comparison of sheath sizes

Comment in

Similar articles

See all similar articles

Cited by 5 articles


    1. Albala DM, Assimos DG, Clayman RV, Denstedt JD, Grasso M, Gutierrez-Aceves J, et al. Lower pole I: A prospective randomized trial of extracorporeal shock wave lithotripsy and percutaneous nephrostolithotomy for lower pole nephrolithiasis-initial results. J Urol. 2001;166:2072–80. - PubMed
    1. Muslumanoglu AY, Tefekli A, Sarilar O, Binbay M, Altunrende F, Ozkuvanci U. Extracorporeal shock wave lithotripsy as first line treatment alternative for urinary tract stones in children: A large scale retrospective analysis. J Urol. 2003;170(6 Pt 1):2405–8. - PubMed
    1. Srisubat A, Potisat S, Lojanapiwat B, Setthawong V, Laopaiboon M. Extracorporeal shock wave lithotripsy (ESWL) versus percutaneous nephrolithotomy (PCNL) or retrograde intrarenal surgery (RIRS) for kidney stones. Cochrane Database Syst Rev. 2009;11 CD007044. - PubMed
    1. Akman T, Binbay M, Ugurlu M, Kaba M, Akcay M, Yazici O, et al. Outcomes of retrograde intrarenal surgery compared with percutaneous nephrolithotomy in elderly patients with moderate-size kidney stones: A matched-pair analysis. J Endourol. 2012;26:625–9. - PubMed
    1. Bozkurt OF, Resorlu B, Yildiz Y, Can CE, Unsal A. Retrograde intrarenal surgery versus percutaneous nephrolithotomy in the management of lower-pole renal stones with a diameter of 15 to 20 mm. J Endourol. 2011;25:1131–5. - PubMed