Binder Effects in SiO2- and Al2O3-Bound Zeolite ZSM-5-Based Extrudates as Studied by Microspectroscopy

ChemCatChem. 2015 Apr 20;7(8):1312-1321. doi: 10.1002/cctc.201402897. Epub 2015 Jan 28.

Abstract

Microspectroscopic methods were explored to investigate binder effects occurring in ZSM-5-containing SiO2- and Al2O3-bound millimetre-sized extrudates. Using thiophene as a selective probe for Brønsted acidity, coupled with time-resolved in situ UV/Vis and confocal fluorescence microspectroscopy, variations in reactivity and selectivity between the two distinct binder types were established. It was found that aluminium migration occurs in ZSM-5-containing Al2O3-bound extrudates, forming additional Brønsted acid sites. These sites strongly influence the oligomer selectivity, favouring the formation of thiol-like species (i.e., ring-opened species) in contrast to higher oligomers, predominantly formed on SiO2-bound ZSM-5-containing extrudates. Not only were the location and distribution of these oligomers visualised by 3 D analysis, it was also observed that more conjugated species appeared to grow off the surface of the zeolite ZSM-5 crystals (containing less conjugated species) into the surrounding binder material. Furthermore, a higher binder content resulted in an increasing overall reactivity owing to the greater number of stored thiophene monomers available per Brønsted acid site.

Keywords: acidity; fluorescence spectroscopy; microporous materials; sulfur heterocycles; zeolites.