Colored adaptive compressed imaging with a single photodiode

Appl Opt. 2016 May 10;55(14):3711-8. doi: 10.1364/AO.55.003711.

Abstract

Computational ghost imaging is commonly used to reconstruct grayscale images. Currently, however, there is little research aimed at reconstructing color images. In this paper, we theoretically and experimentally demonstrate a colored adaptive compressed imaging method. Benefiting from imaging in YUV color space, the proposed method adequately exploits the sparsity of the U, V components in the wavelet domain, the interdependence between luminance and chrominance, and human visual characteristics. The simulation and experimental results show that our method greatly reduces the measurements required and offers better image quality compared to recovering the red (R), green (G), and blue (B) components separately in RGB color space. As the application of a single photodiode increases, our method shows great potential in many fields.