The androgen receptor (AR) is an important target for drug therapies combating prostate cancer. However, various acquired mutations within the AR sequence often render this receptor resistant to treatment. Ligand-induced interaction between the N- and C-termini of the AR marks the initial step in the AR signaling cascade and can thus serve as an early read-out for analysis of potential antagonists of wt and mutant AR. To measure changes of the N/C interaction in the wt and mutant AR variants upon the addition of inhibitors, we applied our recently developed Fluorescent Two-Hybrid (F2H) assay. The F2H method enables real-time monitoring and quantitative analysis of the interactions between GFP- and RFP-tagged proteins in live mammalian cells, where GFP-tagged proteins are tethered to a specific nuclear location. This anchoring approach provides a local signal enrichment suitable for direct visualization of protein-protein interactions as co-localizations by conventional epifluorescence microscopy. Since the F2H assay is fully reversible, we could monitor dynamics of AR N/C interactions in living cells in real time upon agonistic, as well as antagonistic treatments. In dose-response F2H experiments, we compared the potencies of abiraterone, bicalutamide, enzalutamide, flutamide, and galeterone/TOK-001 to prevent the dihydrotestosterone-induced N/C interaction in wt AR. We further applied the newly developed F2H assay to analyze how the AR N/C interaction is affected by the clinically relevant mutations W741L, F876L, T877A and F876L/T877A. We conclude that F2H is a reliable and technically undemanding approach for straightforward screening of new AR modulators, as well as for monitoring their activity in real time in living cells.
Keywords: Androgen receptor; Antiandrogen; Cellular assay; F2H; Livecell; Microscopy; Mutations.
Copyright © 2016 Elsevier Ltd. All rights reserved.