Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jun:31:101-5.
doi: 10.1016/j.jclinane.2016.01.048. Epub 2016 Apr 12.

Flow rates through intravenous access devices: an in vitro study

Affiliations

Flow rates through intravenous access devices: an in vitro study

Saleem I Khoyratty et al. J Clin Anesth. 2016 Jun.

Abstract

Study objective: Fluid administration using intravenous (IV) access devices is required in many settings. There are a lack of quantitative data comparing traditional cannulas and modern access devices. We aimed to investigate flow rates through modern intravenous access devices using an in vitro system.

Design: This is an experimental study.

Setting and measurements: Rates of flow of intravenous fluids (crystalloid and colloid) were measured through various access devices using a uroflowmeter. Standardized conditions and repeat measurements ensured validity. Fluid was administered with or without the addition of a pressure bag and needle-free valve.

Main results: Increasing the size of cannulas improved flow. Fourteen-gauge cannulas had significantly higher mean flow rates compared to 14G central venous lines in all conditions (136% higher with no pressure bag/valve; 95% CI, +130% to +152%; P < .001). Both the emergency infusion device and rapid infusion catheter produced significantly increased mean flows compared to a 14G cannula (12% higher for emergency infusion catheter; 95% CI, +7% to +15%; P = .008, and 15% higher for rapid infusion catheter; 95% CI, +12% to +21%; P = .004). The needle-free valve significantly impaired flow on 16G and wider IV access devices (36% lower with no pressure bag using 14G cannula; 95% CI, -29% to -46%; P = .003), but flow reductions in narrower IV access were insignificant. Pressure bags significantly improved flow in all devices, in all combinations.

Conclusions: Flow rates in IV devices can be maximized by pressure bag use and removal of needle-free valves. The rapid infusion catheter and emergency infusion catheter allow some increase in flow over a 14G cannula. Familiarity with varying flow rates across IV access devices could better inform clinical decisions.

Keywords: Catheters; Drug administration routes; Drug therapy; Equipment and supplies; Therapeutics; Vascular access devices.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources