Sleep Drive Is Encoded by Neural Plastic Changes in a Dedicated Circuit
- PMID: 27212237
- PMCID: PMC4892967
- DOI: 10.1016/j.cell.2016.04.013
Sleep Drive Is Encoded by Neural Plastic Changes in a Dedicated Circuit
Abstract
Prolonged wakefulness leads to an increased pressure for sleep, but how this homeostatic drive is generated and subsequently persists is unclear. Here, from a neural circuit screen in Drosophila, we identify a subset of ellipsoid body (EB) neurons whose activation generates sleep drive. Patch-clamp analysis indicates these EB neurons are highly sensitive to sleep loss, switching from spiking to burst-firing modes. Functional imaging and translational profiling experiments reveal that elevated sleep need triggers reversible increases in cytosolic Ca(2+) levels, NMDA receptor expression, and structural markers of synaptic strength, suggesting these EB neurons undergo "sleep-need"-dependent plasticity. Strikingly, the synaptic plasticity of these EB neurons is both necessary and sufficient for generating sleep drive, indicating that sleep pressure is encoded by plastic changes within this circuit. These studies define an integrator circuit for sleep homeostasis and provide a mechanism explaining the generation and persistence of sleep drive.
Copyright © 2016 Elsevier Inc. All rights reserved.
Figures
Comment in
-
Do Flies Count Sheep or NMDA Receptors to Go to Sleep?Cell. 2016 Jun 2;165(6):1310-1311. doi: 10.1016/j.cell.2016.05.059. Cell. 2016. PMID: 27259141
Similar articles
-
NMDA receptors and L-type voltage-gated Ca²⁺ channels mediate the expression of bidirectional homeostatic intrinsic plasticity in cultured hippocampal neurons.Neuroscience. 2014 Sep 26;277:610-23. doi: 10.1016/j.neuroscience.2014.07.038. Epub 2014 Jul 31. Neuroscience. 2014. PMID: 25086314
-
Clock-Generated Temporal Codes Determine Synaptic Plasticity to Control Sleep.Cell. 2018 Nov 15;175(5):1213-1227.e18. doi: 10.1016/j.cell.2018.09.016. Epub 2018 Oct 11. Cell. 2018. PMID: 30318147 Free PMC article.
-
Sleep need-dependent changes in functional connectivity facilitate transmission of homeostatic sleep drive.Curr Biol. 2022 Nov 21;32(22):4957-4966.e5. doi: 10.1016/j.cub.2022.09.048. Epub 2022 Oct 13. Curr Biol. 2022. PMID: 36240772 Free PMC article.
-
Neuronal substrates of sleep homeostasis; lessons from flies, rats and mice.Curr Opin Neurobiol. 2017 Jun;44:228-235. doi: 10.1016/j.conb.2017.05.003. Epub 2017 Jun 16. Curr Opin Neurobiol. 2017. PMID: 28628804 Review.
-
Dynamic neuronal instability generates synaptic plasticity and behavior: Insights from Drosophila sleep.Neurosci Res. 2024 Jan;198:1-7. doi: 10.1016/j.neures.2023.06.009. Epub 2023 Jun 28. Neurosci Res. 2024. PMID: 37385545 Free PMC article. Review.
Cited by
-
Under warm ambient conditions, Drosophila melanogaster suppresses nighttime activity via the neuropeptide pigment dispersing factor.Genes Brain Behav. 2022 Apr;21(4):e12802. doi: 10.1111/gbb.12802. Epub 2022 Mar 14. Genes Brain Behav. 2022. PMID: 35285135 Free PMC article.
-
Subtype-Specific Roles of Ellipsoid Body Ring Neurons in Sleep Regulation in Drosophila.J Neurosci. 2023 Feb 1;43(5):764-786. doi: 10.1523/JNEUROSCI.1350-22.2022. Epub 2022 Dec 19. J Neurosci. 2023. PMID: 36535771 Free PMC article.
-
LKB1 is physiologically required for sleep from Drosophila melanogaster to the Mus musculus.Genetics. 2022 Jul 4;221(3):iyac082. doi: 10.1093/genetics/iyac082. Genetics. 2022. PMID: 35579349 Free PMC article.
-
Differential regulation of the Drosophila sleep homeostat by circadian and arousal inputs.Elife. 2019 Feb 5;8:e40487. doi: 10.7554/eLife.40487. Elife. 2019. PMID: 30719975 Free PMC article.
-
Stem cell-specific ecdysone signaling regulates the development and function of a Drosophila sleep homeostat.bioRxiv [Preprint]. 2023 Oct 2:2023.09.29.560022. doi: 10.1101/2023.09.29.560022. bioRxiv. 2023. Update in: Curr Biol. 2024 Nov 4;34(21):4951-4967.e5. doi: 10.1016/j.cub.2024.09.020 PMID: 37873323 Free PMC article. Updated. Preprint.
References
-
- Benington JH, Heller HC. Restoration of brain energy metabolism as the function of sleep. Prog. Neurobiol. 1995;45:347–360. - PubMed
-
- Berridge KC. Motivation concepts in behavioral neuroscience. Physiol. & Behav. 2004;81:179–209. - PubMed
-
- Berridge MJ. Neuronal calcium signaling. Neuron. 1998;21:13–26. - PubMed
-
- Borbely AA. A two process model of sleep regulation. Hum. Neurobiol. 1982;1:195–204. - PubMed
-
- Borst A, Helmstaedter M. Common circuit design in fly and mammalian motion vision. Nat. Neurosci. 2015;18:1067–1076. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous
