Sequence-dependent nanometer-scale conformational dynamics of individual RecBCD-DNA complexes

Nucleic Acids Res. 2016 Jul 8;44(12):5849-60. doi: 10.1093/nar/gkw445. Epub 2016 May 24.

Abstract

RecBCD is a multifunctional enzyme that possesses both helicase and nuclease activities. To gain insight into the mechanism of its helicase function, RecBCD unwinding at low adenosine triphosphate (ATP) (2-4 μM) was measured using an optical-trapping assay featuring 1 base-pair (bp) precision. Instead of uniformly sized steps, we observed forward motion convolved with rapid, large-scale (∼4 bp) variations in DNA length. We interpret this motion as conformational dynamics of the RecBCD-DNA complex in an unwinding-competent state, arising, in part, by an enzyme-induced, back-and-forth motion relative to the dsDNA that opens and closes the duplex. Five observations support this interpretation. First, these dynamics were present in the absence of ATP. Second, the onset of the dynamics was coupled to RecBCD entering into an unwinding-competent state that required a sufficiently long 5' strand to engage the RecD helicase. Third, the dynamics were modulated by the GC-content of the dsDNA. Fourth, the dynamics were suppressed by an engineered interstrand cross-link in the dsDNA that prevented unwinding. Finally, these dynamics were suppressed by binding of a specific non-hydrolyzable ATP analog. Collectively, these observations show that during unwinding, RecBCD binds to DNA in a dynamic mode that is modulated by the nucleotide state of the ATP-binding pocket.

MeSH terms

  • Adenosine Diphosphate / analogs & derivatives
  • Adenosine Diphosphate / chemistry
  • Adenosine Diphosphate / metabolism
  • Adenosine Triphosphate / chemistry
  • Adenosine Triphosphate / metabolism
  • Adenylyl Imidodiphosphate / chemistry
  • Adenylyl Imidodiphosphate / metabolism
  • Binding Sites
  • DNA / chemistry*
  • DNA / genetics
  • DNA / metabolism
  • DNA, Bacterial / chemistry*
  • DNA, Bacterial / genetics
  • DNA, Bacterial / metabolism
  • Escherichia coli / genetics*
  • Escherichia coli / metabolism
  • Escherichia coli Proteins / chemistry*
  • Escherichia coli Proteins / genetics
  • Escherichia coli Proteins / metabolism
  • Exodeoxyribonuclease V / chemistry*
  • Exodeoxyribonuclease V / genetics
  • Exodeoxyribonuclease V / metabolism
  • Gene Expression
  • Kinetics
  • Nucleic Acid Conformation
  • Protein Binding
  • Protein Conformation

Substances

  • DNA, Bacterial
  • Escherichia coli Proteins
  • 2-fluoro-ADP
  • Adenylyl Imidodiphosphate
  • Adenosine Diphosphate
  • Adenosine Triphosphate
  • DNA
  • Exodeoxyribonuclease V
  • exodeoxyribonuclease V, E coli