Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 May 25;16:90.
doi: 10.1186/s12866-016-0708-5.

Age-related Changes in Gut Microbiota Composition From Newborn to Centenarian: A Cross-Sectional Study

Affiliations
Free PMC article

Age-related Changes in Gut Microbiota Composition From Newborn to Centenarian: A Cross-Sectional Study

Toshitaka Odamaki et al. BMC Microbiol. .
Free PMC article

Abstract

Background: It has been reported that the composition of human gut microbiota changes with age; however, few studies have used molecular techniques to investigate the long-term, sequential changes in gut microbiota composition. In this study, we investigated the sequential changes in gut microbiota composition in newborn to centenarian Japanese subjects.

Results: Fecal samples from 367 healthy Japanese subjects between the ages of 0 and 104 years were analyzed by high-throughput sequencing of amplicons derived from the V3-V4 region of the 16S rRNA gene. Analysis based on bacterial co-abundance groups (CAGs) defined by Kendall correlations between genera revealed that certain transition types of microbiota were enriched in infants, adults, elderly individuals and both infant and elderly subjects. More positive correlations between the relative abundances of genera were observed in the elderly-associated CAGs compared with the infant- and adult-associated CAGs. Hierarchical Ward's linkage clustering based on the abundance of genera indicated five clusters, with median (interquartile range) ages of 3 (0-35), 33 (24-45), 42 (32-62), 77 (36-84) and 94 (86-98) years. Subjects were predominantly clustered with their matched age; however, some of them fell into mismatched age clusters. Furthermore, clustering based on the proportion of transporters predicted by phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) showed that subjects were divided into two age-related groups, the adult-enriched and infant/elderly-enriched clusters. Notably, all the drug transporters based on Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology groups were found in the infant/elderly-enriched cluster.

Conclusion: Our results indicate some patterns and transition points in the compositional changes in gut microbiota with age. In addition, the transporter property prediction results suggest that nutrients in the gut might play an important role in changing the gut microbiota composition with age.

Keywords: Aging; Commensal bacteria; Gut microbiota; Japanese population.

Figures

Fig. 1
Fig. 1
UniFrac clustering for each age group. a Unweighted and b weighted UniFrac PCoA of gut microbiota from 371 samples collected from the infant to the centenarian stage. Each number in the legend indicates a group as shown in Table 1
Fig. 2
Fig. 2
Age-related sequential changes in gut microbiota composition. Overview of phylum/genus composition. Orange, Actinobacteria; Blue, Firmicutes; Red, Bacteroidetes; Pink, Proteobacteria; Black, sum of other phyla. Each component of the cumulative bar chart indicates a genus. Each number indicates a group as shown in Table 1
Fig. 3
Fig. 3
Transition type of each co-abundance group (CAG) from infant to centenarian. Each number indicates a group as shown in Table 1. Box-plots show the interquartile range (IQR) of the sum of z-scores converted from the relative abundance of genera belonging to the same CAG. Open circles and asterisks indicate outliers from 1.5- to 3.0-fold IQR and over 3.0-fold IQR, respectively
Fig. 4
Fig. 4
Network plot highlighting relationships between genera in nine CAGs. The colors of each node indicate the nine CAGs as shown in Fig. 3. Circle size indicates genus abundance. Pink and blue lines show significant positive and negative correlations between two bacterial genera with an absolute coefficient value greater than 0.3. Taxa that are found in more than 50 % of the subjects were indicated
Fig. 5
Fig. 5
Age-related change in alpha-diversities of gut microbiota. Dashed line indicates a polynomial approximation for each alpha-diversity. Each number below the figure indicates a group as shown in Table 1

Similar articles

See all similar articles

Cited by 156 articles

See all "Cited by" articles

References

    1. Mitsuoka T, Hayakawa K. The fecal flora in man. I. Composition of the fecal flora of various age groups. Zentralbl Bakteriol Orig A. 1973;223:333–342. - PubMed
    1. Conlon M a, Bird AR. The Impact of Diet and Lifestyle on Gut Microbiota and Human Health. Nutrients. 2014;7:17–44. doi: 10.3390/nu7010017. - DOI - PMC - PubMed
    1. Palmer C, Bik EM, DiGiulio DB, Relman D a, Brown PO. Development of the human infant intestinal microbiota. PLoS Biol. 2007;5:e177. doi: 10.1371/journal.pbio.0050177. - DOI - PMC - PubMed
    1. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010;107:11971–11975. doi: 10.1073/pnas.1002601107. - DOI - PMC - PubMed
    1. Tsuji H, Oozeer R, Matsuda K, Matsuki T, Ohta T, Nomoto K, et al. Molecular monitoring of the development of intestinal microbiota in Japanese infants. Benef Microbes. 2012;3:113–125. doi: 10.3920/BM2011.0038. - DOI - PubMed

MeSH terms

Substances

LinkOut - more resources

Feedback