Periostin as a multifunctional modulator of the wound healing response

Cell Tissue Res. 2016 Sep;365(3):453-65. doi: 10.1007/s00441-016-2426-6. Epub 2016 May 28.


During tissue healing, the dynamic and temporal alterations required for effective repair occur in the structure and composition of the extracellular matrix (ECM). Matricellular proteins (MPs) are a group of diverse non-structural ECM components that bind cell surface receptors mediating interactions between the cell and its microenviroment, effectively regulating adhesion, migration, proliferation, signaling, and cell phenotype. Periostin (Postn), a pro-fibrogenic secreted glycoprotein, is defined as an MP based on its expression pattern and regulatory roles during development and healing and in disease processes. Postn consists of a typical signal sequence, an EMI domain responsible for binding to fibronectin, four tandem fasciclin-like domains that are responsible for integrin binding, and a C-terminal region in which multiple splice variants originate. This review focuses specifically on the role of Postn in wound healing and remodeling, an area of intense research during the last 10 years, particularly as related to skin healing and myocardium post-infarction. Postn interacts with cells through various integrin pairs and is an essential downstream effector of transforming growth factor-β superfamily signaling. Across various tissues, Postn is associated with the pro-fibrogenic process: specifically, the transition of fibroblasts to myofibroblasts, collagen fibrillogenesis, and ECM synthesis. Although the complexity of Postn as a modulator of cell behavior in tissue healing is only beginning to be elucidated, its expression is clearly a defining event in moving wound healing through the proliferative and remodeling phases.

Keywords: Cardiac; Matricellular; Myofibroblast; Postn; Skin.

Publication types

  • Review
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Adhesion Molecules / metabolism*
  • Fibrosis
  • Humans
  • Models, Biological
  • Organ Specificity
  • Wound Healing*


  • Cell Adhesion Molecules