Efficient Integrative Multi-SNP Association Analysis via Deterministic Approximation of Posteriors

Am J Hum Genet. 2016 Jun 2;98(6):1114-1129. doi: 10.1016/j.ajhg.2016.03.029. Epub 2016 May 26.


With the increasing availability of functional genomic data, incorporating genomic annotations into genetic association analysis has become a standard procedure. However, the existing methods often lack rigor and/or computational efficiency and consequently do not maximize the utility of functional annotations. In this paper, we propose a rigorous inference procedure to perform integrative association analysis incorporating genomic annotations for both traditional GWASs and emerging molecular QTL mapping studies. In particular, we propose an algorithm, named deterministic approximation of posteriors (DAP), which enables highly efficient and accurate joint enrichment analysis and identification of multiple causal variants. We use a series of simulation studies to highlight the power and computational efficiency of our proposed approach and further demonstrate it by analyzing the cross-population eQTL data from the GEUVADIS project and the multi-tissue eQTL data from the GTEx project. In particular, we find that genetic variants predicted to disrupt transcription factor binding sites are enriched in cis-eQTLs across all tissues. Moreover, the enrichment estimates obtained across the tissues are correlated with the cell types for which the annotations are derived.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Computer Simulation*
  • Genome-Wide Association Study*
  • Genomics / methods*
  • Genotype
  • Humans
  • Polymorphism, Single Nucleotide / genetics*
  • Quantitative Trait Loci*
  • Systems Biology / methods*