Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Jun;66(6):549-75.
doi: 10.1080/10962247.2016.1171263.

Emissions from oil and gas operations in the United States and their air quality implications

Affiliations
Review

Emissions from oil and gas operations in the United States and their air quality implications

David T Allen. J Air Waste Manag Assoc. 2016 Jun.

Abstract

The energy supply infrastructure in the United States has been changing dramatically over the past decade. Increased production of oil and natural gas, particularly from shale resources using horizontal drilling and hydraulic fracturing, made the United States the world's largest producer of oil and natural gas in 2014. This review examines air quality impacts, specifically, changes in greenhouse gas, criteria air pollutant, and air toxics emissions from oil and gas production activities that are a result of these changes in energy supplies and use. National emission inventories indicate that volatile organic compound (VOC) and nitrogen oxide (NOx) emissions from oil and gas supply chains in the United States have been increasing significantly, whereas emission inventories for greenhouse gases have seen slight declines over the past decade. These emission inventories are based on counts of equipment and operational activities (activity factors), multiplied by average emission factors, and therefore are subject to uncertainties in these factors. Although uncertainties associated with activity data and missing emission source types can be significant, multiple recent measurement studies indicate that the greatest uncertainties are associated with emission factors. In many source categories, small groups of devices or sites, referred to as super-emitters, contribute a large fraction of emissions. When super-emitters are accounted for, multiple measurement approaches, at multiple scales, produce similar results for estimated emissions. Challenges moving forward include identifying super-emitters and reducing their emission magnitudes. Work done to date suggests that both equipment malfunction and operational practices can be important. Finally, although most of this review focuses on emissions from energy supply infrastructures, the regional air quality implications of some coupled energy production and use scenarios are examined. These case studies suggest that both energy production and use should be considered in assessing air quality implications of changes in energy infrastructures, and that impacts are likely to vary among regions.

Implications: The energy supply infrastructure in the United States has been changing dramatically over the past decade, leading to changes in emissions from oil and natural gas supply chain sources. In many source categories along these supply chains, small groups of devices or sites, referred to as super-emitters, contribute a large fraction of emissions. Effective emission reductions will require technologies for both identifying super-emitters and reducing their emission magnitudes.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources