Going global: the new era of mapping modifications in RNA

Wiley Interdiscip Rev RNA. 2017 Jan;8(1):10.1002/wrna.1367. doi: 10.1002/wrna.1367. Epub 2016 Jun 1.

Abstract

The post-transcriptional modification of RNA by the addition of one or more chemical groups has been known for over 50 years. These chemical modifications, once thought to be static, are now being discovered to play key regulatory roles in gene expression. The advent of massive parallel sequencing of RNA (RNA-seq) now allows us to probe the complexity of cellular RNA and how chemically altering RNA structure expands the RNA vocabulary. Here we present an overview of the various strategies and technologies that are available to profile RNA chemical modifications at the cellular level. These strategies can be characterized as targeted and untargeted approaches: targeted strategies are developed for one single chemical modification while untargeted strategies are more broadly applicable to a range of such chemical changes. Key for all of these approaches is the ability to locate modifications within the RNA sequence. While most of these methods are built upon an RNA-Seq pipeline, alternative approaches based on mass spectrometry or conventional DNA sequencing retain value in the overall analysis process. We also look forward toward future opportunities and technologies that may expand the types of modifications that can be globally profiled. Given the ever increasing recognition that these RNA chemical modifications play important biological roles, a variety of methods, preferably orthogonal approaches, will be required to globally identify, validate and quantify RNA chemical modifications found in the transcriptome. WIREs RNA 2017, 8:e1367. doi: 10.1002/wrna.1367 For further resources related to this article, please visit the WIREs website.

Publication types

  • Review
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Gene Expression Profiling / methods*
  • Gene Expression Regulation
  • High-Throughput Nucleotide Sequencing / methods*
  • Humans
  • RNA / chemistry*
  • RNA / metabolism*
  • Sequence Analysis, RNA / methods*

Substances

  • RNA