Breznakia blatticola gen. nov. sp. nov. and Breznakia pachnodae sp. nov., two fermenting bacteria isolated from insect guts, and emended description of the family Erysipelotrichaceae

Syst Appl Microbiol. 2016 Jul;39(5):319-29. doi: 10.1016/j.syapm.2016.05.003. Epub 2016 May 25.

Abstract

Two novel, obligately anaerobic Firmicutes from the family Erysipelotrichaceae were isolated from the intestinal tracts of a cockroach (strain ErySL, Shelfordella lateralis) and a scarab beetle larva (strain Pei061, Pachnoda ephippiata). Phylogenetic analysis indicated that the strains belong to a monophyletic group of hitherto uncultured bacteria from insect guts that are only distantly related to any described species (<90% 16S rRNA gene sequence similarity). Ultrastructural analysis revealed a Gram-positive cell envelope and, in the case of strain ErySL, a wide electron-lucent space between the cytoplasmic membrane and cell wall. In older cultures, cells formed pleomorphic rods with a thicker peptidoglycan layer. Both strains were obligately anaerobic and fermented glucose to formate, ethanol, and acetate as major products, but strain Pei061 tolerated up to 1% oxygen in the headspace. The same type of metabolism was observed with Erysipelothrix inopinata, except that the latter grew, albeit poorly, even under air. However, previous claims of a microaerophilic or facultatively anaerobic metabolism in the genus Erysipelothrix could not be substantiated. Based on phenotypic and phylogenetic evidence, we propose to classify the isolates as members of a new genus, Breznakia blatticola gen. nov. sp. nov. and Breznakia pachnodae sp. nov., with strain ErySL(T) (=DSM 28867(T)=JCM 30190(T)) and strain Pei061(T) (=DSM 16784(T)=JCM 30191(T)) as type strains, and provide an emended description of the family Erysipelotrichaceae.

Keywords: Emended family description; Erysipelotrichaceae; Insect gut bacteria; Mixed-acid fermentation; Novel genus; Obligately anaerobic.

MeSH terms

  • Animals
  • Bacterial Typing Techniques
  • Base Composition / genetics
  • Base Sequence
  • Coleoptera / microbiology*
  • DNA, Bacterial / genetics
  • Fatty Acids / metabolism
  • Fermentation / physiology*
  • Firmicutes* / classification
  • Firmicutes* / genetics
  • Firmicutes* / isolation & purification
  • Gastrointestinal Microbiome / genetics*
  • Phylogeny
  • RNA, Ribosomal, 16S / genetics
  • Sequence Analysis, DNA

Substances

  • DNA, Bacterial
  • Fatty Acids
  • RNA, Ribosomal, 16S