Effect of alterations in the cyclopentane ring on bone resorptive activity of prostaglandin

Prostaglandins. 1989 Feb;37(2):229-35. doi: 10.1016/0090-6980(89)90059-2.

Abstract

Previous studies have shown that the natural prostanoids, PGE2, PGE1 and PGF2 alpha are potent stimulators of bone resorption. In this study, we have examined the effects of alterations in the cyclopentane ring of these prostanoids for their effect on the resorptive response of cultured long bones from 19-day fetal rats as measured by the release of previously incorporated 45Ca. Indomethacin (10(-6)M) was added to minimize endogenous prostaglandin production. In this system PGE2 and PGE1, the 9 keto, 11 alpha hydroxy compounds, were approximately equally effective at concentrations of 10(-8) to 10(-6) M. The 9 alpha hydroxy, 11 alpha hydroxy compound, PGF2 alpha, was active at 10(-7) to 10(-5) M. In contrast, the 9 alpha hydroxy, 11-keto compound, PGD2, showed only a minimal stimulation of bone resorption at 10(-5) M. While these data suggested that the 11 alpha hydroxy group was important for bone resorbing activity, 11 beta PGE2 and 11-deoxy PGE1 were only slightly less potent than their physiologic counterparts. Both 9 beta, 11 alpha PGF2 and 9 alpha, 11 beta PGF2 were less potent than PGF2 alpha but did cause substantial stimulation of bone resorption and were equally effective at 10(-6) to 10(-5) M. 9 alpha, 11 beta PGF2 alpha is of particular interest since it is major metabolite of PGD2. These results suggest that the binding of prostanoids to the receptor which mediates bone resorption is affected by changes at the 9 and 11 positions of the pentane ring but do not support the hypothesis that the 11 alpha OH function is essential for this biological activity.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Bone Resorption / drug effects*
  • Calcium Radioisotopes
  • In Vitro Techniques
  • Prostaglandin D2 / pharmacology
  • Prostaglandins / pharmacology*
  • Prostaglandins E / pharmacology
  • Prostaglandins F / pharmacology
  • Rats
  • Structure-Activity Relationship

Substances

  • Calcium Radioisotopes
  • Prostaglandins
  • Prostaglandins E
  • Prostaglandins F
  • Prostaglandin D2