The three-dimensional structure of human serum albumin has been solved at 6.0 angstrom (A) resolution by the method of multiple isomorphous replacement. Crystals were grown from solutions of polyethylene glycol in the infrequently observed space group P42(1)2 (unit cell constants a = b = 186.5 +/- 0.5 A and c = 81.0 +/- 0.5 A) and diffracted x-rays to lattice d-spacings of less than 2.9 A. The electron density maps are of high quality and revealed the structure as a predominantly alpha-helical globin protein in which the course of the polypeptide can be traced. The binding loci of several organic compounds have been determined.