Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation
- PMID: 27282387
- PMCID: PMC4963198
- DOI: 10.7554/eLife.13374
Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation
Abstract
How metabolism is reprogrammed during neuronal differentiation is unknown. We found that the loss of hexokinase (HK2) and lactate dehydrogenase (LDHA) expression, together with a switch in pyruvate kinase gene splicing from PKM2 to PKM1, marks the transition from aerobic glycolysis in neural progenitor cells (NPC) to neuronal oxidative phosphorylation. The protein levels of c-MYC and N-MYC, transcriptional activators of the HK2 and LDHA genes, decrease dramatically. Constitutive expression of HK2 and LDHA during differentiation leads to neuronal cell death, indicating that the shut-off aerobic glycolysis is essential for neuronal survival. The metabolic regulators PGC-1α and ERRγ increase significantly upon neuronal differentiation to sustain the transcription of metabolic and mitochondrial genes, whose levels are unchanged compared to NPCs, revealing distinct transcriptional regulation of metabolic genes in the proliferation and post-mitotic differentiation states. Mitochondrial mass increases proportionally with neuronal mass growth, indicating an unknown mechanism linking mitochondrial biogenesis to cell size.
Keywords: LDHA; developmental biology; glycolysis; human; metabolism; neuronal differentiation; stem cell; stem cells; tricarboxylic acid cycle.
Conflict of interest statement
The authors declare that no competing interests exist.
Figures
Similar articles
-
NEK2 Promotes Aerobic Glycolysis in Multiple Myeloma Through Regulating Splicing of Pyruvate Kinase.J Hematol Oncol. 2017 Jan 13;10(1):17. doi: 10.1186/s13045-017-0392-4. J Hematol Oncol. 2017. PMID: 28086949 Free PMC article.
-
Ochratoxin A induces reprogramming of glucose metabolism by switching energy metabolism from oxidative phosphorylation to glycolysis in human gastric epithelium GES-1 cells in vitro.Toxicol Lett. 2020 Oct 15;333:232-241. doi: 10.1016/j.toxlet.2020.08.008. Epub 2020 Aug 22. Toxicol Lett. 2020. PMID: 32835834
-
Metabolic phenotype of bladder cancer.Cancer Treat Rev. 2016 Apr;45:46-57. doi: 10.1016/j.ctrv.2016.03.005. Epub 2016 Mar 8. Cancer Treat Rev. 2016. PMID: 26975021 Review.
-
Metabolic Enhancement of Glycolysis and Mitochondrial Respiration Are Essential for Neuronal Differentiation.Cell Reprogram. 2020 Dec;22(6):291-299. doi: 10.1089/cell.2020.0034. Epub 2020 Oct 16. Cell Reprogram. 2020. PMID: 33064558
-
Age-dependent metabolic dysregulation in cancer and Alzheimer's disease.Biogerontology. 2014 Dec;15(6):559-77. doi: 10.1007/s10522-014-9534-z. Epub 2014 Oct 11. Biogerontology. 2014. PMID: 25305052 Review.
Cited by
-
Investigating Müller glia reprogramming in mice: a retrospective of the last decade, and a look to the future.Neural Regen Res. 2025 Apr 1;20(4):946-959. doi: 10.4103/NRR.NRR-D-23-01612. Epub 2024 Apr 16. Neural Regen Res. 2025. PMID: 38989930 Free PMC article.
-
Mitochondrial and Autophagic Regulation of Adult Neurogenesis in the Healthy and Diseased Brain.Int J Mol Sci. 2021 Mar 24;22(7):3342. doi: 10.3390/ijms22073342. Int J Mol Sci. 2021. PMID: 33805219 Free PMC article. Review.
-
Mitochondrial dysfunction of induced pluripotent stem cells-based neurodegenerative disease modeling and therapeutic strategy.Front Cell Dev Biol. 2022 Nov 21;10:1030390. doi: 10.3389/fcell.2022.1030390. eCollection 2022. Front Cell Dev Biol. 2022. PMID: 36478742 Free PMC article. Review.
-
Approaches to investigating metabolism in human neurodevelopment using organoids: insights from intestinal and cancer studies.Development. 2022 Oct 15;149(20):dev200506. doi: 10.1242/dev.200506. Epub 2022 Oct 18. Development. 2022. PMID: 36255366 Free PMC article.
-
The Redox Theory of Development.Antioxid Redox Signal. 2020 Apr 1;32(10):715-740. doi: 10.1089/ars.2019.7976. Antioxid Redox Signal. 2020. PMID: 31891515 Free PMC article. Review.
References
-
- Ahuja P, Zhao P, Angelis E, Ruan H, Korge P, Olson A, Wang Y, Jin ES, Jeffrey FM, Portman M, Maclellan WR. Myc controls transcriptional regulation of cardiac metabolism and mitochondrial biogenesis in response to pathological stress in mice. Journal of Clinical Investigation. 2010;120:1494–1505. doi: 10.1172/JCI38331. - DOI - PMC - PubMed
-
- Anastasiou D, Yu Y, Israelsen WJ, Jiang JK, Boxer MB, Hong BS, Tempel W, Dimov S, Shen M, Jha A, Yang H, Mattaini KR, Metallo CM, Fiske BP, Courtney KD, Malstrom S, Khan TM, Kung C, Skoumbourdis AP, Veith H, Southall N, Walsh MJ, Brimacombe KR, Leister W, Lunt SY, Johnson ZR, Yen KE, Kunii K, Davidson SM, Christofk HR, Austin CP, Inglese J, Harris MH, Asara JM, Stephanopoulos G, Salituro FG, Jin S, Dang L, Auld DS, Park HW, Cantley LC, Thomas CJ, Vander Heiden MG. Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nature Chemical Biology. 2012;8:839–847. doi: 10.1038/nchembio.1060. - DOI - PMC - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous
