Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 May 23:(111):53835.
doi: 10.3791/53835.

Isolation and Cannulation of Cerebral Parenchymal Arterioles

Affiliations

Isolation and Cannulation of Cerebral Parenchymal Arterioles

Paulo W Pires et al. J Vis Exp. .

Abstract

Intracerebral parenchymal arterioles (PAs), which include parenchymal arterioles, penetrating arterioles and pre-capillary arterioles, are high resistance blood vessels branching out from pial arteries and arterioles and diving into the brain parenchyma. Individual PA perfuse a discrete cylindrical territory of the parenchyma and the neurons contained within. These arterioles are a central player in the regulation of cerebral blood flow both globally (cerebrovascular autoregulation) and locally (functional hyperemia). PAs are part of the neurovascular unit, a structure that matches regional blood flow to metabolic activity within the brain and also includes neurons, interneurons, and astrocytes. Perfusion through PAs is directly linked to the activity of neurons in that particular territory and increases in neuronal metabolism lead to an augmentation in local perfusion caused by dilation of the feed PA. Regulation of PAs differs from that of better-characterized pial arteries. Pressure-induced vasoconstriction is greater in PAs and vasodilatory mechanisms vary. In addition, PAs do not receive extrinsic innervation from perivascular nerves - innervation is intrinsic and indirect in nature through contact with astrocytic endfeet. Thus, data regarding contractile regulation accumulated by studies using pial arteries does not directly translate to understanding PA function. Further, it remains undetermined how pathological states, such as hypertension and diabetes, affect PA structure and reactivity. This knowledge gap is in part a consequence of the technical difficulties pertaining to PA isolation and cannulation. In this manuscript we present a protocol for isolation and cannulation of rodent PAs. Further, we show examples of experiments that can be performed with these arterioles, including agonist-induced constriction and myogenic reactivity. Although the focus of this manuscript is on PA cannulation and pressure myography, isolated PAs can also be used for biochemical, biophysical, molecular, and imaging studies.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Dunn KM, Nelson MT. Neurovascular signaling in the brain and the pathological consequences of hypertension. Am J Physiol Heart Circ Physiol. 2014;306:H1–H14. - PMC - PubMed
    1. Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat Rev Neurosci. 2004;5:347–360. - PubMed
    1. Dabertrand F, et al. Prostaglandin E2, a postulated astrocyte-derived neurovascular coupling agent, constricts rather than dilates parenchymal arterioles. J Cereb Blood Flow Metab. 2013;33:479–482. - PMC - PubMed
    1. Nishimura N, Schaffer CB, Friedman B, Lyden PD, Kleinfeld D. Penetrating arterioles are a bottleneck in the perfusion of neocortex. Proc Natl Acad Sci U S A. 2007;104:365–370. - PMC - PubMed
    1. Pires PW, Jackson WF, Dorrance AM. Regulation of myogenic tone and structure of parenchymal arterioles by hypertension and the mineralocorticoid receptor. Am J Physiol Heart Circ Physiol. 2015;309:H127–H136. - PMC - PubMed

Publication types

LinkOut - more resources