Learning Universal Computations with Spikes

PLoS Comput Biol. 2016 Jun 16;12(6):e1004895. doi: 10.1371/journal.pcbi.1004895. eCollection 2016 Jun.

Abstract

Providing the neurobiological basis of information processing in higher animals, spiking neural networks must be able to learn a variety of complicated computations, including the generation of appropriate, possibly delayed reactions to inputs and the self-sustained generation of complex activity patterns, e.g. for locomotion. Many such computations require previous building of intrinsic world models. Here we show how spiking neural networks may solve these different tasks. Firstly, we derive constraints under which classes of spiking neural networks lend themselves to substrates of powerful general purpose computing. The networks contain dendritic or synaptic nonlinearities and have a constrained connectivity. We then combine such networks with learning rules for outputs or recurrent connections. We show that this allows to learn even difficult benchmark tasks such as the self-sustained generation of desired low-dimensional chaotic dynamics or memory-dependent computations. Furthermore, we show how spiking networks can build models of external world systems and use the acquired knowledge to control them.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Action Potentials / physiology*
  • Animals
  • Computational Biology
  • Humans
  • Learning / physiology*
  • Memory, Long-Term / physiology
  • Models, Neurological*
  • Nerve Net / physiology
  • Neural Networks, Computer
  • Neurons / physiology
  • Nonlinear Dynamics
  • Synaptic Transmission / physiology

Grants and funding

This work was supported in part by the European Commission through the Marie Curie Initial Training Network ‘NETT’, project N. 289146, by the German Federal Ministry of Education and Research BMBF through the Bernstein Network (Bernstein Award 2014) and by the Max Kade Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.