Modeling Cryptosporidium and Giardia in Ground and Surface Water Sources in Rural India: Associations with Latrines, Livestock, Damaged Wells, and Rainfall Patterns

Environ Sci Technol. 2016 Jul 19;50(14):7498-507. doi: 10.1021/acs.est.5b05797. Epub 2016 Jul 1.

Abstract

Surface and groundwater contamination with fecal pathogens is a public health concern especially in low-income settings where these sources are used untreated. We modeled observed Cryptosporidium and Giardia contamination in community ponds (n = 94; 79% contaminated), deep tubewells (DTWs) (n = 107; 17%), and shallow tubewells (STWs) (n = 96; 19%) during the 2012 and 2013 monsoon seasons (June-August) in 60 villages in Puri District, India to understand sources and processes of contamination. Detection of Cryptosporidium and/or Giardia in a tubewell was positively associated with damage to the well pad for DTWs, the amount of human loading into pour-flush latrine pits nearby (≤15 m) for STWs, and the village literacy rate (for Giardia in STWs). Pond concentration levels were positively associated with the number of people practicing open defecation within 50 m and the sheep population for Cryptosporidium, and with the village illiteracy rate for Giardia. Recent rainfall increased the risk of Cryptosporidium in STWs (an extreme event) and ponds (any), while increasing seasonal rainfall decreased the risk of Giardia in STWs and ponds. Full latrine coverage in this setting is expected to marginally reduce pond Cryptosporidium contamination (16%) while increasing local groundwater protozoal contamination (87-306%), with the largest increases predicted for Cryptosporidium in STWs.

MeSH terms

  • Animals
  • Cryptosporidium*
  • Giardia*
  • Humans
  • Livestock
  • Sheep
  • Toilet Facilities
  • Water

Substances

  • Water