Visualization and cellular hierarchy inference of single-cell data using SPADE
- PMID: 27310265
- DOI: 10.1038/nprot.2016.066
Visualization and cellular hierarchy inference of single-cell data using SPADE
Abstract
High-throughput single-cell technologies provide an unprecedented view into cellular heterogeneity, yet they pose new challenges in data analysis and interpretation. In this protocol, we describe the use of Spanning-tree Progression Analysis of Density-normalized Events (SPADE), a density-based algorithm for visualizing single-cell data and enabling cellular hierarchy inference among subpopulations of similar cells. It was initially developed for flow and mass cytometry single-cell data. We describe SPADE's implementation and application using an open-source R package that runs on Mac OS X, Linux and Windows systems. A typical SPADE analysis on a 2.27-GHz processor laptop takes ∼5 min. We demonstrate the applicability of SPADE to single-cell RNA-seq data. We compare SPADE with recently developed single-cell visualization approaches based on the t-distribution stochastic neighborhood embedding (t-SNE) algorithm. We contrast the implementation and outputs of these methods for normal and malignant hematopoietic cells analyzed by mass cytometry and provide recommendations for appropriate use. Finally, we provide an integrative strategy that combines the strengths of t-SNE and SPADE to infer cellular hierarchy from high-dimensional single-cell data.
Similar articles
-
Toward deterministic and semiautomated SPADE analysis.Cytometry A. 2017 Mar;91(3):281-289. doi: 10.1002/cyto.a.23068. Epub 2017 Feb 24. Cytometry A. 2017. PMID: 28234411 Free PMC article.
-
Fast interpolation-based t-SNE for improved visualization of single-cell RNA-seq data.Nat Methods. 2019 Mar;16(3):243-245. doi: 10.1038/s41592-018-0308-4. Epub 2019 Feb 11. Nat Methods. 2019. PMID: 30742040 Free PMC article.
-
Generalizable and Scalable Visualization of Single-Cell Data Using Neural Networks.Cell Syst. 2018 Aug 22;7(2):185-191.e4. doi: 10.1016/j.cels.2018.05.017. Epub 2018 Jun 20. Cell Syst. 2018. PMID: 29936184 Free PMC article.
-
New insights into hematopoietic differentiation landscapes from single-cell RNA sequencing.Blood. 2019 Mar 28;133(13):1415-1426. doi: 10.1182/blood-2018-08-835355. Epub 2019 Feb 6. Blood. 2019. PMID: 30728144 Free PMC article. Review.
-
The end of gating? An introduction to automated analysis of high dimensional cytometry data.Eur J Immunol. 2016 Jan;46(1):34-43. doi: 10.1002/eji.201545774. Epub 2015 Nov 30. Eur J Immunol. 2016. PMID: 26548301 Review.
Cited by
-
From data to diagnosis: how machine learning is revolutionizing biomarker discovery in idiopathic inflammatory myopathies.Brief Bioinform. 2023 Nov 22;25(1):bbad514. doi: 10.1093/bib/bbad514. Brief Bioinform. 2023. PMID: 38243695 Free PMC article. Review.
-
Single-cell spatial metabolomics with cell-type specific protein profiling for tissue systems biology.Nat Commun. 2023 Dec 13;14(1):8260. doi: 10.1038/s41467-023-43917-5. Nat Commun. 2023. PMID: 38086839 Free PMC article.
-
Cyclone: an accessible pipeline to analyze, evaluate, and optimize multiparametric cytometry data.Front Immunol. 2023 Sep 4;14:1167241. doi: 10.3389/fimmu.2023.1167241. eCollection 2023. Front Immunol. 2023. PMID: 37731497 Free PMC article.
-
Identifying dysregulated immune cell subsets following volumetric muscle loss with pseudo-time trajectories.Commun Biol. 2023 Jul 19;6(1):749. doi: 10.1038/s42003-023-04790-6. Commun Biol. 2023. PMID: 37468760 Free PMC article.
-
Analysis of cardiac single-cell RNA-sequencing data can be improved by the use of artificial-intelligence-based tools.Sci Rep. 2023 Apr 26;13(1):6821. doi: 10.1038/s41598-023-32293-1. Sci Rep. 2023. PMID: 37100826 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
- U54 CA143907/CA/NCI NIH HHS/United States
- R01 CA163481/CA/NCI NIH HHS/United States
- U19 AI100627/AI/NIAID NIH HHS/United States
- R01 AI073724/AI/NIAID NIH HHS/United States
- R33 CA183654/CA/NCI NIH HHS/United States
- R00 GM104148/GM/NIGMS NIH HHS/United States
- R01 GM109836/GM/NIGMS NIH HHS/United States
- HHSN272200700038C/AI/NIAID NIH HHS/United States
- R01 NS089533/NS/NINDS NIH HHS/United States
- U54 CA149145/CA/NCI NIH HHS/United States
- P01 CA034233/CA/NCI NIH HHS/United States
- R01 CA184968/CA/NCI NIH HHS/United States
- R01 CA130826/CA/NCI NIH HHS/United States
- HHSN272201200028C/AI/NIAID NIH HHS/United States
- U19 AI057229/AI/NIAID NIH HHS/United States
- R33 CA183692/CA/NCI NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
