Transethnic Genetic-Correlation Estimates from Summary Statistics

Am J Hum Genet. 2016 Jul 7;99(1):76-88. doi: 10.1016/j.ajhg.2016.05.001. Epub 2016 Jun 16.

Abstract

The increasing number of genetic association studies conducted in multiple populations provides an unprecedented opportunity to study how the genetic architecture of complex phenotypes varies between populations, a problem important for both medical and population genetics. Here, we have developed a method for estimating the transethnic genetic correlation: the correlation of causal-variant effect sizes at SNPs common in populations. This methods takes advantage of the entire spectrum of SNP associations and uses only summary-level data from genome-wide association studies. This avoids the computational costs and privacy concerns associated with genotype-level information while remaining scalable to hundreds of thousands of individuals and millions of SNPs. We applied our method to data on gene expression, rheumatoid arthritis, and type 2 diabetes and overwhelmingly found that the genetic correlation was significantly less than 1. Our method is implemented in a Python package called Popcorn.

MeSH terms

  • Arthritis, Rheumatoid / genetics*
  • Body Height
  • Body Mass Index
  • Diabetes Mellitus, Type 2 / genetics*
  • Ethnicity / genetics*
  • Genome-Wide Association Study / methods*
  • Genotype
  • Humans
  • Likelihood Functions
  • Models, Genetic
  • Phenotype
  • Polymorphism, Single Nucleotide / genetics
  • Sample Size
  • Software*