Current progress in genetically encoded voltage indicators for neural activity recording

Curr Opin Chem Biol. 2016 Aug;33:95-100. doi: 10.1016/j.cbpa.2016.05.023. Epub 2016 Jun 17.

Abstract

Genetically Encoded Voltage Indicators (GEVIs) are powerful tools used to investigate neural activity in the brain. The spatiotemporal resolution of GEVIs is on a subcellular and millisecond scale, and is superior to that of the functional magnetic resonance imaging (fMRI) and electroencephalogram (EEG). Further, while patch-clamp techniques record membrane voltage for tens of neurons simultaneously, GEVIs can do so for hundreds of neurons. It is important for neuroscientists to understand the pros and cons of GEVIs and to choose appropriate ones for their specific requirements. Here, we summarize the characteristics of currently available GEVIs based on voltage sensing mechanism and provide a guideline for selecting optimal GEVIs for specific applications.

Publication types

  • Review

MeSH terms

  • Action Potentials*
  • Fluorescence Resonance Energy Transfer / methods*
  • Humans
  • Neurons / physiology*
  • Rhodopsin / chemistry

Substances

  • Rhodopsin