Reward from bugs to bipeds: a comparative approach to understanding how reward circuits function
- PMID: 27328845
- PMCID: PMC4926782
- DOI: 10.1080/01677063.2016.1180385
Reward from bugs to bipeds: a comparative approach to understanding how reward circuits function
Abstract
In a complex environment, animals learn from their responses to stimuli and events. Appropriate response to reward and punishment can promote survival, reproduction and increase evolutionary fitness. Interestingly, the neural processes underlying these responses are remarkably similar across phyla. In all species, dopamine is central to encoding reward and directing motivated behaviors, however, a comprehensive understanding of how circuits encode reward and direct motivated behaviors is still lacking. In part, this is a result of the sheer diversity of neurons, the heterogeneity of their responses and the complexity of neural circuits within which they are found. We argue that general features of reward circuitry are common across model organisms, and thus principles learned from invertebrate model organisms can inform research across species. In particular, we discuss circuit motifs that appear to be functionally equivalent from flies to primates. We argue that a comparative approach to studying and understanding reward circuit function provides a more comprehensive understanding of reward circuitry, and informs disorders that affect the brain's reward circuitry.
Keywords: Behavior; dopamine; functional conservation; neuromodulators; neuropeptides; neurotransmitters.
Figures
Similar articles
-
Shedding Light on Social Reward Circuitry: (Un)common Blueprints in Humans and Rodents.Neuroscientist. 2021 Apr;27(2):159-183. doi: 10.1177/1073858420923552. Epub 2020 Jun 6. Neuroscientist. 2021. PMID: 32507096 Review.
-
Principles of motivation revealed by the diverse functions of neuropharmacological and neuroanatomical substrates underlying feeding behavior.Neurosci Biobehav Rev. 2013 Nov;37(9 Pt A):1985-98. doi: 10.1016/j.neubiorev.2013.02.017. Epub 2013 Mar 1. Neurosci Biobehav Rev. 2013. PMID: 23466532 Free PMC article. Review.
-
Neural Circuits for Reward.Adv Exp Med Biol. 2020;1284:35-41. doi: 10.1007/978-981-15-7086-5_4. Adv Exp Med Biol. 2020. PMID: 32852738 Review.
-
Lighting up the brain's reward circuitry.Ann N Y Acad Sci. 2012 Jul;1260:24-33. doi: 10.1111/j.1749-6632.2011.06368.x. Epub 2012 Jan 13. Ann N Y Acad Sci. 2012. PMID: 22243412
-
The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking.Brain Res Brain Res Rev. 1999 Dec;31(1):6-41. doi: 10.1016/s0165-0173(99)00023-5. Brain Res Brain Res Rev. 1999. PMID: 10611493 Review.
Cited by
-
The Role of Dopamine in the Collective Regulation of Foraging in Harvester Ants.iScience. 2018 Oct 26;8:283-294. doi: 10.1016/j.isci.2018.09.001. Epub 2018 Sep 27. iScience. 2018. PMID: 30270022 Free PMC article.
-
The matricellular protein Drosophila Cellular Communication Network Factor is required for synaptic transmission and female fertility.Genetics. 2023 Mar 2;223(3):iyac190. doi: 10.1093/genetics/iyac190. Genetics. 2023. PMID: 36602539 Free PMC article.
-
Deep(er) Learning.J Neurosci. 2018 Aug 22;38(34):7365-7374. doi: 10.1523/JNEUROSCI.0153-18.2018. Epub 2018 Jul 13. J Neurosci. 2018. PMID: 30006366 Free PMC article.
-
Epigenetic Mechanisms Mediate Nicotine-Induced Reward and Behaviour in Zebrafish.Curr Neuropharmacol. 2022 Mar 4;20(3):510-523. doi: 10.2174/1570159X19666210716112351. Curr Neuropharmacol. 2022. PMID: 34279203 Free PMC article.
-
A network of phosphatidylinositol (4,5)-bisphosphate (PIP2) binding sites on the dopamine transporter regulates amphetamine behavior in Drosophila Melanogaster.Mol Psychiatry. 2021 Aug;26(8):4417-4430. doi: 10.1038/s41380-019-0620-0. Epub 2019 Dec 3. Mol Psychiatry. 2021. PMID: 31796894 Free PMC article.
References
-
- Albin S.D., Kaun K.R., Knapp J.M., Chung P., Heberlein U., Simpson J.H. A subset of serotonergic neurons evokes hunger in adult Drosophila. Current Biology. 2015;25:2435–2440. - PubMed
-
- Ashby F.G., Crossley M.J. A computational model of how cholinergic interneurons protect striatal-dependent learning. Journal of Cognitive Neuroscience. 2011;23:1549–1566. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources