Non-Ceruloplasmin Copper Distinguishes A Distinct Subtype of Alzheimer's Disease: A Study of EEG-Derived Brain Activity

Curr Alzheimer Res. 2016;13(12):1374-1384. doi: 10.2174/1567205013666160603001131.

Abstract

Background: Meta-analyses show that percentages of non-Cp-Cu-copper that is not bound to ceruloplasmin (also known as 'free' copper)-in serum are higher in Alzheimer's disease (AD) patients. Genetic heterogeneity in AD patients stratified on the basis of non-Cp-Cu cut-off sustains the existence of a copper AD metabolic subtype. Non-Cp-Cu abnormalities correlated with alterations of electroencephalographic rhythms (EEG).

Objective: We aimed to determine whether an EEG-derived brain cortical rhythm's heterogeneity between two AD groups stratified on the basis of a copper marker.

Method: We assessed levels of copper, ceruloplasmin, Non-Cp-Cu, and the APOE4 genotype in 67 AD patients and compared resting EEG-derived eLORETA cortical rhythms between AD groups stratified in terms of 'Normal' and 'High' non-Cp-Cu.

Results: The High non-Cp-Cu group experienced a lower power in all bands (0.2-48 Hz) in the parietal cortices (p=0.019) and a more limited alpha band (8-13 Hz) power in the sensory lobes (temporal, occipital, and parietal p>0.05 consistently) than the Normal non-Cp-Cu AD group. When corrected for MMSE, the non-Cp-Cu levels correlated with a reduction of high-frequency brain activity (from high alpha to gamma, 10.5-48 Hz).

Conclusion: This neurophysiological heterogeneity in EEG-derived brain cortical rhythms between the two AD groups sustains a copper AD metabolic subtype; Non-Cp-Cu is a marker of this copper AD.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Aged, 80 and over
  • Alzheimer Disease* / classification
  • Alzheimer Disease* / diagnostic imaging
  • Alzheimer Disease* / physiopathology
  • Apolipoproteins E / genetics
  • Brain / physiopathology*
  • Brain Mapping
  • Brain Waves / physiology*
  • Ceruloplasmin / metabolism
  • Copper / metabolism*
  • Electroencephalography
  • Female
  • Humans
  • Magnetic Resonance Imaging
  • Male
  • Neuropsychological Tests
  • Tomography Scanners, X-Ray Computed

Substances

  • Apolipoproteins E
  • Copper
  • Ceruloplasmin