Systems physiology of the airways in health and obstructive pulmonary disease

Wiley Interdiscip Rev Syst Biol Med. 2016 Sep;8(5):423-37. doi: 10.1002/wsbm.1347. Epub 2016 Jun 24.

Abstract

Fresh air entering the mouth and nose is brought to the blood-gas barrier in the lungs by a repetitively branching network of airways. Provided the individual airway branches remain patent, this airway tree achieves an enormous amplification in cross-sectional area from the trachea to the terminal bronchioles. Obstructive lung diseases such as asthma occur when airway patency becomes compromised. Understanding the pathophysiology of these obstructive diseases thus begins with a consideration of the factors that determine the caliber of an individual airway, which include the force balance between the inward elastic recoil of the airway wall, the outward tethering forces of its parenchymal attachments, and any additional forces due to contraction of airway smooth muscle. Other factors may also contribute significantly to airway narrowing, such as thickening of the airway wall and accumulation of secretions in the lumen. Airway obstruction becomes particularly severe when these various factors occur in concert. However, the effect of airway abnormalities on lung function cannot be fully understood only in terms of what happens to a single airway because narrowing throughout the airway tree is invariably heterogeneous and interdependent. Obstructive lung pathologies thus manifest as emergent phenomena arising from the way in which the airway tree behaves a system. These emergent phenomena are studied with clinical measurements of lung function made by spirometry and by mechanical impedance measured with the forced oscillation technique. Anatomically based computational models are linking these measurements to underlying anatomic structure in systems physiology terms. WIREs Syst Biol Med 2016, 8:423-437. doi: 10.1002/wsbm.1347 For further resources related to this article, please visit the WIREs website.

Publication types

  • Review
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Asthma / physiopathology
  • Humans
  • Lung / physiology*
  • Models, Animal
  • Models, Theoretical*
  • Parenchymal Tissue / physiology
  • Pulmonary Disease, Chronic Obstructive / physiopathology*