Preservation of bioactive compounds of a green vegetable smoothie using short time-high temperature mild thermal treatment

Food Sci Technol Int. 2017 Jan;23(1):46-60. doi: 10.1177/1082013216656240. Epub 2016 Jun 27.

Abstract

Smoothies represent an excellent and convenient alternative to promote the daily consumption of fruit and vegetables in order to obtain their health-promoting benefits. Accordingly, a green fresh vegetables smoothie (77.2% cucumber, 12% broccoli and 6% spinach) rich in health-promoting compounds was developed. Soluble solids content, pH and titratable acidity of the smoothie were 4.3 ± 0.4°Bx, 4.49 ± 0.01 and 0.22 ± 0.02 mg citric acid 100-1 g fw, respectively. Two thermal treatments to reduce microbial loads and preserve quality were assayed: T1 (3 min at 80 ℃) and T2 (45 s at 90 ℃). Fresh blended unheated samples were used as control (CTRL). The smoothie presented a viscoelastic behaviour. T1 and T2 treatments reduced initial microbial loads by 1.3-2.4 and 1.4-3.1 log units, respectively. Samples were stored in darkness at 5 and 15 ℃. Colour and physicochemical changes were reduced in thermal-treated samples throughout storage, which were better preserved at 5 ℃ rather than at 15 ℃. Vitamin C changes during storage were fitted with a Weibullian distribution. Total vitamin C losses of T1 and T2 samples during storage at 15 ℃ were greatly reduced when they were stored at 5 ℃. Initial total phenolic content (151.1 ± 4.04 mg kg-1 fw) was 44 and 36% increased after T1 and T2 treatments, respectively. The 3-p-coumaroyl quinic and chlorogenic acids accounted the 84.7 and 7.1% relative abundance, respectively. Total antioxidant capacity (234.2 ± 20.3 mg Trolox equivalent kg-1 fw) remained constant after the thermal treatments and was better maintained during storage in thermal-treated samples. Glucobrassicin accounted the 81% of the initial total glucosinolates content (117.8 ± 22.2 mg kg-1 fw) of the smoothie. No glucosinolates losses were observed after T2 treatment being better preserved in thermal-treated samples. Conclusively, a short time-high temperature mild thermal treatment (T2) showed better quality and bioactive compounds retention in a green fresh vegetable smoothie during low temperature storage.

Keywords: Phenolic compounds; antioxidants; beverages; glucosinolates; quality; vitamin C.

MeSH terms

  • Antioxidants / analysis
  • Ascorbic Acid / analysis
  • Beverages / analysis
  • Beverages / microbiology
  • Carotenoids / analysis
  • Chlorophyll / analysis
  • Cold Temperature
  • Color
  • Dietary Fiber / analysis
  • Food Analysis
  • Food Contamination / analysis
  • Food Handling*
  • Food Microbiology
  • Food Preservation*
  • Food Storage
  • Fruit / chemistry
  • Fruit / microbiology
  • Hot Temperature
  • Hydrogen-Ion Concentration
  • Nutritive Value
  • Phenols / analysis
  • Phytochemicals / analysis*
  • Rheology
  • Taste
  • Vegetables / chemistry*
  • Vegetables / microbiology

Substances

  • Antioxidants
  • Dietary Fiber
  • Phenols
  • Phytochemicals
  • Chlorophyll
  • Carotenoids
  • Ascorbic Acid