The bacterial SRP receptor, FtsY, is activated on binding to the translocon
- PMID: 27355662
- DOI: 10.1111/mmi.13452
The bacterial SRP receptor, FtsY, is activated on binding to the translocon
Abstract
Proteins are inserted into the bacterial plasma membrane cotranslationally after translating ribosomes are targeted to the translocon in the membrane via the signal recognition particle (SRP) pathway. The targeting pathway involves an interaction between SRP and the SRP receptor, FtsY. Here we focus on the role of FtsY and its interaction with the translocon in controlling targeting. We show that in unbound FtsY the NG and A domains interact with one another. The interaction involves the membrane-targeting region at the junction between A and N domain. The closed form of FtsY is impaired in binding to SRP. Upon binding to the phospholipid-embedded translocon the domains of FtsY move apart. This enhances the docking of the FtsY NG domain to the homologous NG domain of the SRP protein Ffh. Thus, FtsY binding to the translocon has a central role in orchestrating the formation of a quaternary transfer complex in which the nascent peptide is transferred to the translocon. We propose that FtsY activation at the translocon ensures that ribosome-SRP complexes are directed to available translocons. This way sequestering SRP in futile complexes with unbound FtsY can be avoided and efficient targeting to the translocon achieved.
© 2016 The Authors. Molecular Microbiology Published by John Wiley & Sons Ltd.
Similar articles
-
The bacterial SRP receptor, SecA and the ribosome use overlapping binding sites on the SecY translocon.Traffic. 2011 May;12(5):563-78. doi: 10.1111/j.1600-0854.2011.01167.x. Epub 2011 Feb 25. Traffic. 2011. PMID: 21255212
-
Domain rearrangement of SRP protein Ffh upon binding 4.5S RNA and the SRP receptor FtsY.RNA. 2005 Jun;11(6):947-57. doi: 10.1261/rna.7242305. RNA. 2005. PMID: 15923378 Free PMC article.
-
Cotranslational protein targeting to the membrane: Nascent-chain transfer in a quaternary complex formed at the translocon.Sci Rep. 2018 Jul 2;8(1):9922. doi: 10.1038/s41598-018-28262-8. Sci Rep. 2018. PMID: 29967439 Free PMC article.
-
Structural insights into the signal recognition particle.Annu Rev Biochem. 2004;73:539-57. doi: 10.1146/annurev.biochem.73.011303.074048. Annu Rev Biochem. 2004. PMID: 15189152 Review.
-
Targeting and Insertion of Membrane Proteins.EcoSal Plus. 2017 Mar;7(2):10.1128/ecosalplus.ESP-0012-2016. doi: 10.1128/ecosalplus.ESP-0012-2016. EcoSal Plus. 2017. PMID: 28276312 Free PMC article. Review.
Cited by
-
mRNA targeting eliminates the need for the signal recognition particle during membrane protein insertion in bacteria.Cell Rep. 2023 Mar 28;42(3):112140. doi: 10.1016/j.celrep.2023.112140. Epub 2023 Feb 25. Cell Rep. 2023. PMID: 36842086 Free PMC article.
-
Cotranslational Biogenesis of Membrane Proteins in Bacteria.Front Mol Biosci. 2022 Apr 29;9:871121. doi: 10.3389/fmolb.2022.871121. eCollection 2022. Front Mol Biosci. 2022. PMID: 35573737 Free PMC article. Review.
-
Noncompetitive binding of PpiD and YidC to the SecYEG translocon expands the global view on the SecYEG interactome in Escherichia coli.J Biol Chem. 2019 Dec 13;294(50):19167-19183. doi: 10.1074/jbc.RA119.010686. Epub 2019 Nov 7. J Biol Chem. 2019. PMID: 31699901 Free PMC article.
-
Two-step membrane binding by the bacterial SRP receptor enable efficient and accurate Co-translational protein targeting.Elife. 2017 Jul 28;6:e25885. doi: 10.7554/eLife.25885. Elife. 2017. PMID: 28753124 Free PMC article.
-
Structure of the quaternary complex between SRP, SR, and translocon bound to the translating ribosome.Nat Commun. 2017 May 19;8:15470. doi: 10.1038/ncomms15470. Nat Commun. 2017. PMID: 28524878 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
