"Reduced" Coumarin Dyes with an O-Phosphorylated 2,2-Dimethyl-4-(hydroxymethyl)-1,2,3,4-tetrahydroquinoline Fragment: Synthesis, Spectra, and STED Microscopy

Chemistry. 2016 Aug 8;22(33):11631-42. doi: 10.1002/chem.201601252. Epub 2016 Jul 7.

Abstract

Large Stokes-shift coumarin dyes with an O-phosphorylated 4-(hydroxymethyl)-2,2-dimethyl-1,2,3,4-tetrahydroquinoline fragment emitting in the blue, green, and red regions of the visible spectrum were synthesized. For this purpose, N-substituted and O-protected 1,2-dihydro-7-hydroxy-2,2,4-trimethylquinoline was oxidized with SeO2 to the corresponding α,β-unsaturated aldehyde and then reduced with NaBH4 in a "one-pot" fashion to yield N-substituted and 7-O-protected 4-(hydroxymethyl)-7-hydroxy-2,2-dimethyl-1,2,3,4-tetrahydroquinoline as a common precursor to all the coumarin dyes reported here. The photophysical properties of the new dyes ("reduced coumarins") and 1,2-dihydroquinoline analogues (formal precursors) with a trisubstituted C=C bond were compared. The "reduced coumarins" were found to be more photoresistant and brighter than their 1,2-dihydroquinoline counterparts. Free carboxylate analogues, as well as their antibody conjugates (obtained from N-hydroxysuccinimidyl esters) were also prepared. All studied conjugates with secondary antibodies afforded high specificity and were suitable for fluorescence microscopy. The red-emitting coumarin dye bearing a betaine fragment at the C-3-position showed excellent performance in stimulation emission depletion (STED) microscopy.

Keywords: STED microscopy; bioconjugation; coumarins; dyes/pigments; fluorescence.

MeSH terms

  • Coumarins / chemistry*
  • Fluorescent Dyes / chemistry*
  • Microscopy, Fluorescence
  • Phosphorylation
  • Quinolines / chemical synthesis*
  • Quinolines / chemistry*

Substances

  • Coumarins
  • Fluorescent Dyes
  • Quinolines