Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
, 9 (1), 389

Updates on Feline Aelurostrongylosis and Research Priorities for the Next Decade

Affiliations
Review

Updates on Feline Aelurostrongylosis and Research Priorities for the Next Decade

Hany M Elsheikha et al. Parasit Vectors.

Abstract

Feline aelurostrongylosis, caused by the metastrongyloid nematode Aelurostrongylus abstrusus, is an important gastropod-borne parasitic lung disease in cats. Infection with A. abstrusus is widespread globally, but the increasing awareness of this parasite and the advent of more sensitive diagnostics have contributed to the apparent increase in its prevalence and geographic expansion. Clinical features may range in severity from subclinical to life-threatening respiratory disease. Parasitological standard techniques, such as visualization of the nematode first larval stage in faecal and respiratory (bronchial mucus or pleural fluid) samples, remain the mainstays of diagnosis. However, diagnosis is evolving with recent advances in serological and molecular testing, which can improve the time to initiation of effective anthelmintic therapy. Despite numerous anthelmintics that are now available as treatment options, the role of host immunity and lifestyle factors in selecting cats that may benefit from more targeted anthelmintic prophylaxis or treatment practice remains unclear and is likely to guide therapeutic choices as newer data become available. This review summarizes the biology, epidemiology, pathophysiology, diagnosis and treatment options currently available for feline aelurostrongylosis.

Keywords: Aelurostrongylosis; Aelurostrongylus abstrusus; Cat; Lungworm.

Figures

Fig. 1
Fig. 1
Scanning electron micrograph of Aelurostrongylus abstrusus first-stage larva (L1) isolated from cat faeces by Baermann technique. Larva measures approximately 360 to 400 μm in length and the tail ends in a unique sinus wave-shaped kink with a dorsal subterminal spine (arrow). Image courtesy of Bayer Animal Health. Scale-bar: 50 μm
Fig. 2
Fig. 2
Phylogenetic relationships among 32 species of nematodes of the order Rhabditida. This neighbor joining tree was constructed using the concatenated translated amino acid sequences of the 12 mitochondrial protein-encoding genes and a p-distance matrix. Bootstrap values greater than 85 % are given at the internal nodes. Taxa are color-coded based on their superfamily designation (see key for details) and are labelled with their species and GenBank accession number. The alignments were done using the MegAlign Pro module of the Lasergene software package (DNASTAR, Inc) and the phylogenetic tree was generated using MEGA. A decrease in branch support of this group in the combined analyses involving the mitochondrial genomes is probably related to intrinsic features of these genomes, which may hamper the establishment of homologies during the alignment of relatively large matrices
Fig. 3
Fig. 3
Thoracic radiographs of cats infected with Aelurostrongylus abstrusus: a lateral thoracic radiograph from a 3-year-old female cat with moderate dysponea and coughing. There is a generalised alveolar-interstitial pattern; b and c lateral and dorso-ventral radiographs from a 1-year-old male cat, living outdoors with severe aelurostrongylosis. The cat presented with cachexia, coughing, severe dysponea, and died 3 days after examination. There is a significant interstitial-alveolar pattern, affecting the diaphragmatic lung lobes in particular
Fig. 4
Fig. 4
Lung of a male (neutered), 1-year-old European shorthair cat infected with Aelurostrongylus abstrusus. White-greyish irregularly shaped areas of consolidation are randomly distributed over the whole lung and are interspersed with dark red, hyperaemic areas. The affected areas are multifocal, locally extensive to coalescent and when sliced of caseous nature. Also, lung lymph nodes are enlarged
Fig. 5
Fig. 5
Histopathological examination of a cat lung infected with Aelurostrongylus abstrusus. Macroscopic consolidated areas correspond histologically to lung tissues presenting massive cellular infiltration: lymphocytes (green arrows), macrophages (red arrows), multinucleated giant cells (black arrow), epithelioid histiocytes (yellow arrows) as well as eosinophils (orange arrows) and plasma cells (blue arrow) are densely packed forming granulomas. Alveolar lumina are obliterated and sections of parasitic eggs and larvae (dotted black arrows) are visible. Haematoxylin and eosin. Scale-bar: 50 μm

Similar articles

See all similar articles

Cited by 7 PubMed Central articles

See all "Cited by" articles

References

    1. Scott DW. Current knowledge of aelurostrongylosis in the cat. Literature review and case reports. Cornell Vet. 1973;63:483–500. - PubMed
    1. Traversa D, Guglielmini C. Feline aelurostrongylosis and canine angiostrongylosis: a challenging diagnosis for two emerging verminous pneumonia infections. Vet Parasitol. 2008;157(3-4):163–174. doi: 10.1016/j.vetpar.2008.07.020. - DOI - PubMed
    1. Traversa D, Di Cesare A. Feline lungworms: what a dilemma. Trends Parasitol. 2013;29(9):423–430. doi: 10.1016/j.pt.2013.07.004. - DOI - PubMed
    1. Traversa D, Lia RP, Iorio R, Boari A, Paradies P, Capelli G, et al. Diagnosis and risk factors of Aelurostrongylus abstrusus (Nematoda, Strongylida) infection in cats from Italy. Vet Parasitol. 2008;153:182–186. doi: 10.1016/j.vetpar.2008.01.024. - DOI - PubMed
    1. Mircean V, Titilincu A, Vasile C. Prevalence of endoparasites in household cat (Felis catus) populations from Transylvania (Romania) and association with risk factors. Vet Parasitol. 2010;171:163–166. doi: 10.1016/j.vetpar.2010.03.005. - DOI - PubMed
Feedback