Global comparison of phosphoproteins in human and rodent hearts: implications for translational studies of myosin light chain and troponin phosphorylations

Springerplus. 2016 Jun 21;5(1):808. doi: 10.1186/s40064-016-2469-x. eCollection 2016.

Abstract

Cardiac remodeling and failure are regulated by a myriad of cardiac protein phosphorylations. In the present study, cardiac phosphoprotein patterns were examined in rodent and human hearts Left ventricular tissue samples were obtained from human systolic failing (n = 5) and control (n = 5) hearts and from two rat models of hypertensive heart failure, i.e., spontaneously hypertensive heart failure and Dahl salt-sensitive rats and corresponding controls. Phosphoproteins were separated by 2D-DIGE with Cydye staining, phosphoprotein patterns were analyzed using pixel intensity in rectified images. Specific phosphoproteins which were different in human versus rodent hearts were identified by MALDI-TOF/TOF Mass Spectrometry. Targeted pair-wise analyses showed differences (p < 0.05) in 26 % of the pixels, which included pixels containing phosphorylated troponin T, myosin light chain, peroxiredoxin, and haptoglobin. These results show differences in rodent versus human cardiac remodeling which will influence the translation rodent studies to humans in this area.