Detecting Preperimetric Glaucoma with Standard Automated Perimetry Using a Deep Learning Classifier
- PMID: 27395766
- DOI: 10.1016/j.ophtha.2016.05.029
Detecting Preperimetric Glaucoma with Standard Automated Perimetry Using a Deep Learning Classifier
Abstract
Purpose: To differentiate the visual fields (VFs) of preperimetric open-angle glaucoma (OAG) patients from the VFs of healthy eyes using a deep learning (DL) method.
Design: Cohort study.
Participants: One hundred seventy-one preperimetric glaucoma VFs (PPGVFs) from 53 eyes in 51 OAG patients and 108 healthy eyes of 87 healthy participants.
Methods: Preperimetric glaucoma VFs were defined as all VFs before a first diagnosis of manifest glaucoma (Anderson-Patella's criteria). In total, 171 PPGVFs from 53 eyes in 51 OAG patients and 108 VFs from 108 healthy eyes in 87 healthy participants were analyzed (all VFs were tested using the Humphrey Field Analyzer 30-2 program; Carl Zeiss Meditec, Dublin, CA). The 52 total deviation, mean deviation, and pattern standard deviation values were used as predictors in the DL classifier: a deep feed-forward neural network (FNN), along with other machine learning (ML) methods, including random forests (RF), gradient boosting, support vector machine, and neural network (NN). The area under the receiver operating characteristic curve (AUC) was used to evaluate the accuracy of discrimination for each method.
Main outcome measures: The AUCs obtained with each classifier method.
Results: A significantly larger AUC of 92.6% (95% confidence interval [CI], 89.8%-95.4%) was obtained using the deep FNN classifier compared with all other ML methods: 79.0% (95% CI, 73.5%-84.5%) with RF, 77.6% (95% CI, 71.7%-83.5%) with gradient boosting, 71.2% (95% CI, 65.0%-77.5%), and 66.7% (95% CI, 60.1%-73.3%) with NN.
Conclusions: Preperimetric glaucoma VFs can be distinguished from healthy VFs with very high accuracy using a deep FNN classifier.
Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Similar articles
-
Identifying "preperimetric" glaucoma in standard automated perimetry visual fields.Invest Ophthalmol Vis Sci. 2014 Oct 23;55(12):7814-20. doi: 10.1167/iovs.14-15120. Invest Ophthalmol Vis Sci. 2014. PMID: 25342615
-
Can frequency-doubling technology and short-wavelength automated perimetries detect visual field defects before standard automated perimetry in patients with preperimetric glaucoma?J Glaucoma. 2007 Jun-Jul;16(4):372-83. doi: 10.1097/IJG.0b013e31803bbb17. J Glaucoma. 2007. PMID: 17571000
-
Flicker-defined form perimetry in glaucoma patients.Graefes Arch Clin Exp Ophthalmol. 2015 Mar;253(3):447-55. doi: 10.1007/s00417-014-2887-9. Epub 2014 Dec 16. Graefes Arch Clin Exp Ophthalmol. 2015. PMID: 25511293
-
Diagnostic capability of optical coherence tomography (Stratus OCT 3) in early glaucoma.Ophthalmology. 2007 Dec;114(12):2238-43. doi: 10.1016/j.ophtha.2007.03.005. Epub 2007 Jun 11. Ophthalmology. 2007. PMID: 17561260
-
Performances of Machine Learning in Detecting Glaucoma Using Fundus and Retinal Optical Coherence Tomography Images: A Meta-Analysis.Am J Ophthalmol. 2022 May;237:1-12. doi: 10.1016/j.ajo.2021.12.008. Epub 2021 Dec 21. Am J Ophthalmol. 2022. PMID: 34942113 Review.
Cited by
-
Diagnosing glaucoma in primary eye care and the role of Artificial Intelligence applications for reducing the prevalence of undetected glaucoma in Australia.Eye (Lond). 2024 Mar 21. doi: 10.1038/s41433-024-03026-z. Online ahead of print. Eye (Lond). 2024. PMID: 38514852 Review.
-
Artificial intelligence in glaucoma: opportunities, challenges, and future directions.Biomed Eng Online. 2023 Dec 16;22(1):126. doi: 10.1186/s12938-023-01187-8. Biomed Eng Online. 2023. PMID: 38102597 Free PMC article. Review.
-
Assessing the Impact of Image Quality on Deep Learning Classification of Infectious Keratitis.Ophthalmol Sci. 2023 May 16;3(4):100331. doi: 10.1016/j.xops.2023.100331. eCollection 2023 Dec. Ophthalmol Sci. 2023. PMID: 37920421 Free PMC article.
-
Artificial intelligence in ophthalmology.Rom J Ophthalmol. 2023 Jul-Sep;67(3):207-213. doi: 10.22336/rjo.2023.37. Rom J Ophthalmol. 2023. PMID: 37876505 Free PMC article. Review.
-
Bibliometric analysis of artificial intelligence and optical coherence tomography images: research hotspots and frontiers.Int J Ophthalmol. 2023 Sep 18;16(9):1431-1440. doi: 10.18240/ijo.2023.09.09. eCollection 2023. Int J Ophthalmol. 2023. PMID: 37724282 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
