Mirror-enhanced super-resolution microscopy
- PMID: 27398242
- PMCID: PMC4936537
- DOI: 10.1038/lsa.2016.134
Mirror-enhanced super-resolution microscopy
Abstract
Axial excitation confinement beyond the diffraction limit is crucial to the development of next-generation, super-resolution microscopy. STimulated Emission Depletion (STED) nanoscopy offers lateral super-resolution using a donut-beam depletion, but its axial resolution is still over 500 nm. Total internal reflection fluorescence microscopy is widely used for single-molecule localization, but its ability to detect molecules is limited to within the evanescent field of ~ 100 nm from the cell attachment surface. We find here that the axial thickness of the point spread function (PSF) during confocal excitation can be easily improved to 110 nm by replacing the microscopy slide with a mirror. The interference of the local electromagnetic field confined the confocal PSF to a 110-nm spot axially, which enables axial super-resolution with all laser-scanning microscopes. Axial sectioning can be obtained with wavelength modulation or by controlling the spacer between the mirror and the specimen. With no additional complexity, the mirror-assisted excitation confinement enhanced the axial resolution six-fold and the lateral resolution two-fold for STED, which together achieved 19-nm resolution to resolve the inner rim of a nuclear pore complex and to discriminate the contents of 120 nm viral filaments. The ability to increase the lateral resolution and decrease the thickness of an axial section using mirror-enhanced STED without increasing the laser power is of great importance for imaging biological specimens, which cannot tolerate high laser power.
Keywords: confocal; interference; point spread function; super-resolution.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
Similar articles
-
On-Chip Mirror Enhanced Multiphoton Upconversion Super-Resolution Microscopy.Nano Lett. 2023 Jun 28;23(12):5514-5519. doi: 10.1021/acs.nanolett.3c00763. Epub 2023 Jun 5. Nano Lett. 2023. PMID: 37276247
-
Tuning donut profile for spatial resolution in stimulated emission depletion microscopy.Rev Sci Instrum. 2013 Apr;84(4):043701. doi: 10.1063/1.4799665. Rev Sci Instrum. 2013. PMID: 23635197 Free PMC article.
-
Bridging the resolution-sectioning gap in STED nanoscopy with coherent-hybrid depletion.Opt Express. 2024 Oct 21;32(22):39769-39784. doi: 10.1364/OE.532358. Opt Express. 2024. PMID: 39573787
-
Recent advances in super-resolution fluorescence imaging and its applications in biology.J Genet Genomics. 2013 Dec 20;40(12):583-95. doi: 10.1016/j.jgg.2013.11.003. Epub 2013 Nov 23. J Genet Genomics. 2013. PMID: 24377865 Review.
-
Pushing the Resolution Limit of Stimulated Emission Depletion Optical Nanoscopy.Int J Mol Sci. 2023 Dec 19;25(1):26. doi: 10.3390/ijms25010026. Int J Mol Sci. 2023. PMID: 38203197 Free PMC article. Review.
Cited by
-
Time-of-flight resolved stimulated Raman scattering microscopy using counter-propagating ultraslow Bessel light bullets generation.Light Sci Appl. 2024 Jul 1;13(1):148. doi: 10.1038/s41377-024-01498-y. Light Sci Appl. 2024. PMID: 38951517 Free PMC article.
-
Advances of super-resolution fluorescence polarization microscopy and its applications in life sciences.Comput Struct Biotechnol J. 2020 Jun 26;18:2209-2216. doi: 10.1016/j.csbj.2020.06.038. eCollection 2020. Comput Struct Biotechnol J. 2020. PMID: 32952935 Free PMC article. Review.
-
Visualization of cristae and mtDNA interactions via STED nanoscopy using a low saturation power probe.Light Sci Appl. 2024 May 24;13(1):116. doi: 10.1038/s41377-024-01463-9. Light Sci Appl. 2024. PMID: 38782912 Free PMC article.
-
Fast photoacoustic imaging systems using pulsed laser diodes: a review.Biomed Eng Lett. 2018 Mar 6;8(2):167-181. doi: 10.1007/s13534-018-0060-9. eCollection 2018 May. Biomed Eng Lett. 2018. PMID: 30603201 Free PMC article. Review.
-
Widefield standing wave microscopy of red blood cell membrane morphology with high temporal resolution.Biomed Opt Express. 2018 Mar 16;9(4):1745-1761. doi: 10.1364/BOE.9.001745. eCollection 2018 Apr 1. Biomed Opt Express. 2018. PMID: 29675316 Free PMC article.
References
-
- Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 2006; 313: 1642–1645. - PubMed
-
- Axelrod D. Total internal reflection fluorescence microscopy in cell biology. Traffic 2001; 2: 764–774. - PubMed
-
- Orrit M. Nobel prize in chemistry: celebrating optical nanoscopy. Nat Photonics 2014; 8: 887–888.
-
- Hell SW. Far-field optical nanoscopy. Science 2007; 316: 1153–1158. - PubMed
-
- Hao X, Kuang CF, Gu ZT, Wang YF, Li S et al. From microscopy to nanoscopy via visible light. Light Sci Appl 2013; 2: e108, doi:10.1038/lsa.2013.64.
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
