X-ray energy optimisation in computed microtomography

Phys Med Biol. 1989 Jun;34(6):679-90. doi: 10.1088/0031-9155/34/6/004.


Expressions describing the absorbed dose and the number of incident photons necessary for the detection of a contrasting detail in x-ray transmission CT imaging of a circular phantom are derived as functions of the linear attenuation coefficients of the materials comprising the object and the detail. A shell of a different material can be included to allow simulation of CT imaging of the skulls of small laboratory animals. The equations are used to estimate the optimum photon energy in x-ray transmission computed microtomography. The optimum energy depends on whether the number of incident photons or the absorbed dose at a point in the object is minimised. For a water object of 300 mm diameter the two optimisation criteria yield optimum photon energies differing by an order of magnitude.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Humans
  • Models, Structural
  • Tomography, X-Ray Computed / methods*