Sub GV/cm terahertz radiation from relativistic laser-solid interactions via coherent transition radiation

Phys Rev E. 2016 Jun;93(6):063204. doi: 10.1103/PhysRevE.93.063204. Epub 2016 Jun 13.

Abstract

Broadband terahertz (THz) radiation with extremely high peak power, generated by the interaction of a femtosecond laser with a thin solid target, has been investigated via particle-in-cell simulations. The spatial (angular) and temporal profiles of the THz radiation reveal that it is caused by the coherent transition radiation emitted when laser-produced hot electrons pass through the front or rear surface of the target. Dependence of the THz radiation on laser and target parameters is studied; it is shown to have a strong correlation with hot electron production. The THz radiation conversion efficiency can be as high as a few times 10^{-3}. This radiation is not only a potentially high power THz source, but may also be used as a unique diagnostic of hot electron generation and transport in relativistic laser-solid interactions.