Simultaneous quantification of PGI2 and TXA2 metabolites in plasma and urine in NO-deficient mice by a novel UHPLC/MS/MS method

J Pharm Biomed Anal. 2016 Sep 10:129:148-154. doi: 10.1016/j.jpba.2016.06.050. Epub 2016 Jun 28.

Abstract

The balance between vascular prostacyclin (PGI2) generated mainly via cyclooxygenase-2 (COX-2) and its physiological antagonist platelet-derived thromboxane A2 (TXA2) formed by cyclooxygenase-1 (COX-1) determines cardiovascular homeostasis. In the present work, a novel bioanalytical method for simultaneous quantification of stable plasma and urinary metabolites of PGI2 (6-keto-PGF1α, 2,3-dinor-6-keto-PGF1α) and TXA2 (TXB2, 2,3-dinor-TXB2) using ultra high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC/MS/MS) was developed. The method was validated using artificial plasma and urine and linearity range, intra- and inter-day precision and accuracy, recovery of analytes, relative and absolute matrix effect and stability of analytes were determined. The use of artificial biofluids improved the method sensitivity as it eliminated the contribution of endogenous metabolites present in mice plasma and urine to validation procedure. The newly developed and validated method allowed to quantify 6-keto-PGF1α and TXB2 in mice plasma as well as 2,3-dinor-6-keto-PGF1α and 2,3-dinor-TXB2 in urine samples with high sensitivity and accuracy. The calibration range was established from 0.1 to 100ng/mL for all analytes using artificial biofluids and the recoveries were greater than 89.9%. All validated parameters met the criteria of acceptance specified in FDA and EMA guidance. This method was successfully employed for profiling of the changes in PGI2 and TXA2 generation in NO-deficient mice. This work demonstrated that NO-deficiency induced by L-NAME, evidenced by a fall in nitrite in plasma and urine, was associated with platelet activation, robust increase in TXB2 and mild increase in 6-keto-PGF1α concentration in plasma. Changes in 2,3-dinor-6-keto-PGF1α and 2,3-dinor-TXB2 concentration in urine were less evident suggesting that the measurements in plasma better reflect modest changes in PGI2/TXA2 homeostasis than measurements in urine.

Keywords: Eicosanoids; NO-deficient mice; Prostacyclin; Thromboxane A(2); UHPLC/MS/MS method.

MeSH terms

  • Animals
  • Chromatography, High Pressure Liquid / methods
  • Epoprostenol / blood*
  • Epoprostenol / urine*
  • Female
  • Male
  • Mice
  • Mice, Inbred BALB C
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Nitric Oxide / deficiency*
  • Tandem Mass Spectrometry / methods*
  • Thromboxane A2 / blood*
  • Thromboxane A2 / urine*

Substances

  • Nitric Oxide
  • Thromboxane A2
  • Epoprostenol