Development of pacemaker properties and rhythmogenic mechanisms in the mouse embryonic respiratory network
- PMID: 27434668
- PMCID: PMC4990420
- DOI: 10.7554/eLife.16125
Development of pacemaker properties and rhythmogenic mechanisms in the mouse embryonic respiratory network
Abstract
Breathing is a vital rhythmic behavior generated by hindbrain neuronal circuitry, including the preBötzinger complex network (preBötC) that controls inspiration. The emergence of preBötC network activity during prenatal development has been described, but little is known regarding inspiratory neurons expressing pacemaker properties at embryonic stages. Here, we combined calcium imaging and electrophysiological recordings in mouse embryo brainstem slices together with computational modeling to reveal the existence of heterogeneous pacemaker oscillatory properties relying on distinct combinations of burst-generating INaP and ICAN conductances. The respective proportion of the different inspiratory pacemaker subtypes changes during prenatal development. Concomitantly, network rhythmogenesis switches from a purely INaP/ICAN-dependent mechanism at E16.5 to a combined pacemaker/network-driven process at E18.5. Our results provide the first description of pacemaker bursting properties in embryonic preBötC neurons and indicate that network rhythmogenesis undergoes important changes during prenatal development through alterations in both circuit properties and the biophysical characteristics of pacemaker neurons.
Keywords: mouse; neural network; neuroscience; pacemaker neuron; preBötzinger complex; prenatal development; respiratory rhythmogenesis.
Conflict of interest statement
The authors declare that no competing interests exist.
Figures
Similar articles
-
Glycinergic pacemaker neurons in preBötzinger complex of neonatal mouse.J Neurosci. 2010 Mar 10;30(10):3634-9. doi: 10.1523/JNEUROSCI.3040-09.2010. J Neurosci. 2010. PMID: 20219997 Free PMC article.
-
Kinetic properties of persistent Na+ current orchestrate oscillatory bursting in respiratory neurons.J Gen Physiol. 2018 Nov 5;150(11):1523-1540. doi: 10.1085/jgp.201812100. Epub 2018 Oct 9. J Gen Physiol. 2018. PMID: 30301870 Free PMC article.
-
Predictions and experimental tests of a new biophysical model of the mammalian respiratory oscillator.Elife. 2022 Jul 7;11:e74762. doi: 10.7554/eLife.74762. Elife. 2022. PMID: 35796425 Free PMC article.
-
Neural mechanisms for sigh generation during prenatal development.J Neurophysiol. 2018 Sep 1;120(3):1162-1172. doi: 10.1152/jn.00314.2018. Epub 2018 Jun 13. J Neurophysiol. 2018. PMID: 29897860 Review.
-
Embryonic emergence of the respiratory rhythm generator.Respir Physiol Neurobiol. 2009 Aug 31;168(1-2):86-91. doi: 10.1016/j.resp.2009.06.013. Epub 2009 Jun 26. Respir Physiol Neurobiol. 2009. PMID: 19560563 Review.
Cited by
-
Biophysical mechanisms in the mammalian respiratory oscillator re-examined with a new data-driven computational model.Elife. 2019 Mar 25;8:e41555. doi: 10.7554/eLife.41555. Elife. 2019. PMID: 30907727 Free PMC article.
-
A novel mechanism for ramping bursts based on slow negative feedback in model respiratory neurons.Chaos. 2024 Jun 1;34(6):063131. doi: 10.1063/5.0201472. Chaos. 2024. PMID: 38865093
-
Interdependence of cellular and network properties in respiratory rhythmogenesis.bioRxiv [Preprint]. 2023 Nov 2:2023.10.30.564834. doi: 10.1101/2023.10.30.564834. bioRxiv. 2023. Update in: Proc Natl Acad Sci U S A. 2024 May 7;121(19):e2318757121. doi: 10.1073/pnas.2318757121 PMID: 37961254 Free PMC article. Updated. Preprint.
-
Respiratory rhythm generation, hypoxia, and oxidative stress-Implications for development.Respir Physiol Neurobiol. 2019 Dec;270:103259. doi: 10.1016/j.resp.2019.103259. Epub 2019 Jul 29. Respir Physiol Neurobiol. 2019. PMID: 31369874 Free PMC article. Review.
-
Two opposite voltage-dependent currents control the unusual early development pattern of embryonic Renshaw cell electrical activity.Elife. 2021 Apr 26;10:e62639. doi: 10.7554/eLife.62639. Elife. 2021. PMID: 33899737 Free PMC article.
References
-
- Bouvier J, Autran S, Dehorter N, Katz DM, Champagnat J, Fortin G, Thoby-Brisson M. Brain-derived neurotrophic factor enhances fetal respiratory rhythm frequency in the mouse preBötzinger complex in vitro. European Journal of Neuroscience. 2008;28:510–520. doi: 10.1111/j.1460-9568.2008.06345.x. - DOI - PMC - PubMed
-
- Butera RJ, Rinzel J, Smith JC. Models of respiratory rhythm generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons. Journal of Neurophysiology. 1999;82:382–397. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
